Plasma Chemistry and Plasma Processing

, Volume 36, Issue 2, pp 397–414 | Cite as

Effect of Cold Atmospheric Pressure Plasma on the Wheat Seedlings Vigor and on the Inactivation of Microorganisms on the Seeds Surface

  • A. Zahoranová
  • M. Henselová
  • D. Hudecová
  • B. Kaliňáková
  • D. Kováčik
  • V. Medvecká
  • M. Černák
Original Paper


Effects of a cold atmospheric pressure plasma (CAPP) treatment on the germination, production of biomass, vigor of seedlings, uptake of water of wheat seeds (Triticum aestivum L. cv. Eva) were investigated. The CAPP treatment influence on the inactivation of microorganisms occurring on the surface of wheat seeds was investigated also. The so-called Diffuse Coplanar Surface Barrier Discharge generating a cold plasma in ambient air with high power volume density of some 100 W/cm3 was used for the treatment of seeds at exposure times in the range of 10–600 s. The optical emission spectroscopy and the electrical measurements were used for estimation of CAPP parameters. The obtained results indicate that the germination rate, dry weight and vigor of seedlings significantly increased for plasma treatment from 20 to 50 s. The plasma treatment of seeds led to an extensive increase in wettability and faster germination comparing with the untreated seeds. The growth inhibition effect of CAPP on the surface microflora of wheat seeds increased with the increase of the treatment time. The efficiency of the treatment of wheat seeds artificially contaminated with pure cultures of filamentous fungi decreased in the following order: Fusarium nivale > F. culmorum > Trichothecium roseum > Aspergillus flavus > A. clavatus.


Cold atmospheric pressure plasma Wheat seed Germination Filamentous fungi Inactivation 



This study was supported by the Slovak Grant Agency for Science VEGA No. 1/0904/14. We wish to thank the Sedos, Krakovany in Slovakia for the samples of seeds.


  1. 1.
    Roth JR (2001) Industrial plasma engineering: applications to nonthermal plasma processing, vol 2. IOP Publishing Ltd., LondonCrossRefGoogle Scholar
  2. 2.
    Laroussi M (2005) Low temperature plasma-based sterilization : overview and state-of-the-art. Plasma Processes Polym 2:391–400. doi: 10.1002/ppap.200400078 CrossRefGoogle Scholar
  3. 3.
    Ben Gadri R, Roth JR, Montie TC et al (2000) Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Surf Coat Technol 131:528–541. doi: 10.1016/S0257-8972(00)00803-3 CrossRefGoogle Scholar
  4. 4.
    Morfill GE, Kong MG, Zimmermann JL (2009) Focus on plasma medicine. N J Phys 11:115011CrossRefGoogle Scholar
  5. 5.
    Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233:81–86. doi: 10.1016/j.ijms.2003.11.016 CrossRefGoogle Scholar
  6. 6.
    Machala Z, Chládeková L, Pelach M (2010) Plasma agents in bio-decontamination by dc discharges in atmospheric air. J Phys D Appl Phys 43:222001CrossRefGoogle Scholar
  7. 7.
    Lee K, Joo B, Hee D et al (2005) Sterilization of Escherichia coli and MRSA using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol 193:35–38. doi: 10.1016/j.surfcoat.2004.07.034 CrossRefGoogle Scholar
  8. 8.
    Moisan M, Barbeau J, Moreau S et al (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226:1–21. doi: 10.1016/S0378-5173(01)00752-9 CrossRefGoogle Scholar
  9. 9.
    Basaran P, Basaran-Akgul N, Oksuz L (2008) Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol 25:626–632. doi: 10.1016/ CrossRefGoogle Scholar
  10. 10.
    Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. N J Phys 11:115020. doi: 10.1088/1367-2630/11/11/115020 CrossRefGoogle Scholar
  11. 11.
    Kostov KG, Rocha V, Koga-Ito CY et al (2010) Bacterial sterilization by a dielectric barrier discharge (DBD) in air. Surf Coat Technol 204:2954–2959. doi: 10.1016/j.surfcoat.2010.01.052 CrossRefGoogle Scholar
  12. 12.
    Koval’ová Z, Tarabová K, Hensel K, Machala Z (2013) Decontamination of Streptococci biofilms and Bacillus cereus spores on plastic surfaces with DC and pulsed corona discharges. Eur Phys J Appl Phys 61:24306. doi: 10.1051/epjap/2012120449 CrossRefGoogle Scholar
  13. 13.
    Sinclair JB (1993) Control of seedborne pathogens and diseases of soybean seeds and seedlings. Pestic Sci 37:15–19. doi: 10.1002/ps.2780370104 CrossRefGoogle Scholar
  14. 14.
    Michalíková A, Roháčik T, Kulichova R (1995) Efficacy of Vitavax 200 FF against diseases of spring barley caused by helminthosporioses. Agriculture 41:518–529Google Scholar
  15. 15.
    Oehrle NW, Karr DB, Kremer RJ, Emerich DW (2000) Enhanced attachment of Bradyrhizobium japonicum to soybean through reduced root colonization of internally seedborne microorganisms. Can J Microbiol 46:600–606. doi: 10.1139/w00-030 CrossRefGoogle Scholar
  16. 16.
    Henselová M, Hudecová D (2001) Differences in the microflora of scarified and unscarified seeds of Karwinskia humboldtiana (Rhamnaceae). Folia Microbiol 46:543–548CrossRefGoogle Scholar
  17. 17.
    Pietruszewski S (1996) Effects of magnetic biostimulation of wheat seeds on germination, yield and proteins. Int Agrophys 10:51–55Google Scholar
  18. 18.
    Volin JC, Denes FS, Young RA, Park SMT (2000) Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40:1706–1718CrossRefGoogle Scholar
  19. 19.
    Meiqiang Yin, Mingjing Huang, Ma Buzhou MT (2005) Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. Plasma Sci Technol 7:3143CrossRefGoogle Scholar
  20. 20.
    Marinković D, Borcean I (2009) Effect of cold electron plasma and extremely low frequency electron-magnetic field on wheat yield. Agric Sci 41:96–101Google Scholar
  21. 21.
    Lynikiene S, Pozeliene GR (2006) Influence of corona discharge field on seed viability and dynamics of germination. Int Agrophys 20:195–200Google Scholar
  22. 22.
    Borodin IF, Shcherbakov KN (1998) Electrophysical ways of stimulating plant growth. Mach Agric 5:35–36 (in Russian) Google Scholar
  23. 23.
    Palov I (2003) Research of influence of electromagnetic impact on maize seed and plants. Mach Agric 15:10–15 (in Bulgarian) Google Scholar
  24. 24.
    Dhayal M, Lee S, Park S (2006) Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum 80:499–506. doi: 10.1016/j.vacuum.2005.06.008 CrossRefGoogle Scholar
  25. 25.
    Šerá B, Straňák V, Šerý M, Tichý M, Špatenka P (2008) Germination of Chenopodium albumin response to microwave plasma treatment. Plasma Sci Technol 10:506–511CrossRefGoogle Scholar
  26. 26.
    Šerá B, Špatenka P, Šerý M et al (2010) Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci 38:2963–2968CrossRefGoogle Scholar
  27. 27.
    Živković S, Puač N, Giba Z et al (2004) The stimulatory effect of non-equilibrium (low temperature) air plasma pretreatment on light-induced germination of Paulownia tomentosa seeds. Seed Sci Technol 32:693–701CrossRefGoogle Scholar
  28. 28.
    Dobrin D, Magureanu M, Mandache NB, Ionita M-D (2015) The influence of non-thermal plasma treatment on wheat germination. Innov Food Sci Emerg Technol 29:255–260. doi: 10.1016/j.ifset.2015.02.006 CrossRefGoogle Scholar
  29. 29.
    Ksenz NV, Kaciesvili SV (2000) Electrostatic field and productivity of cereals. Mech Electrif Agric 6:18–19 (in Russian) Google Scholar
  30. 30.
    Huang H-H, Wang S-R (2008) The effects of inverter magnetic fields on early seed germination of mung beans. Bioelectromagnetics 29:649–657. doi: 10.1002/bem.20432 CrossRefGoogle Scholar
  31. 31.
    Vashisth A, Nagarajan S (2008) Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics 29:571–578. doi: 10.1002/bem.20426 CrossRefGoogle Scholar
  32. 32.
    Mitra A, Li Y-F, Klämpfl TG et al (2013) Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food Bioprocess Technol 7:645–653. doi: 10.1007/s11947-013-1126-4 CrossRefGoogle Scholar
  33. 33.
    Jiang J, He X, Li L, Li J, Shao H, Xu Q, Ye R, Dong Y (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol 16:54–58CrossRefGoogle Scholar
  34. 34.
    Deng X, Shi J, Kong MG (2006) Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans Plasma Sci 34:1310–1316. doi: 10.1109/TPS.2006.877739 CrossRefGoogle Scholar
  35. 35.
    Jung H, Kim DB, Gweon B et al (2010) Enhanced inactivation of bacterial spores by atmospheric pressure plasma with catalyst TiO2. Appl Catal B 93:212–216. doi: 10.1016/j.apcatb.2009.09.031 CrossRefGoogle Scholar
  36. 36.
    Ohkawa H, Akitsu T, Tsuji M, Kimura H (2006) Pulse-modulated, high-frequency plasma sterilization at atmospheric-pressure. Surf Coat Technol 200:5829–5835. doi: 10.1016/j.surfcoat.2005.08.124 CrossRefGoogle Scholar
  37. 37.
    Gweon B, Kim DB, Moon SY, Choe W (2009) Escherichia coli deactivation study controlling the atmospheric pressure plasma discharge conditions. Curr Appl Phys 9:625–628. doi: 10.1016/j.cap.2008.06.001 CrossRefGoogle Scholar
  38. 38.
    Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour Technol 99:5104–5109. doi: 10.1016/j.biortech.2007.09.076 CrossRefGoogle Scholar
  39. 39.
    Arrus K, Blank G, Abramson D et al (2005) Aflatoxin production by Aspergillus flavus in Brazil nuts. J Stored Prod Res 41:513–527. doi: 10.1016/j.jspr.2004.07.005 CrossRefGoogle Scholar
  40. 40.
    Yu MC, Yuan J-M (2004) Environmental factors and risk for hepatocellular carcinoma. Gastroenterology 127:S72–S78. doi: 10.1016/j.gastro.2004.09.018 CrossRefGoogle Scholar
  41. 41.
    Park BJ, Takatori K, Sugita-Konishi Y et al (2007) Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol 201:5733–5737. doi: 10.1016/j.surfcoat.2006.07.092 CrossRefGoogle Scholar
  42. 42.
    Černák M, Kováčik D, Ráhel’ J et al (2011) Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys Control Fusion 53:124031. doi: 10.1088/0741-3335/53/12/124031 CrossRefGoogle Scholar
  43. 43.
    Černák M, Černáková L, Hudec I et al (2009) Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials. Eur Phys J Appl Phys 47:22806. doi: 10.1051/epjap/2009131 CrossRefGoogle Scholar
  44. 44.
    Šimor M, Ráhel’ J, Vojtek P et al (2002) Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Appl Phys Lett 81:2716. doi: 10.1063/1.1513185 CrossRefGoogle Scholar
  45. 45.
    Homola T, Matoušek J, Medvecká V et al (2012) Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning. Appl Surf Sci 258:7135–7139. doi: 10.1016/j.apsusc.2012.03.188 CrossRefGoogle Scholar
  46. 46.
    Navrátil Z, Trunec D, Šmíd R, Lazar L (2006) A software for optical emission spectroscopy: problem formulation and application to plasma diagnostics. Czech J Phys 56:944–951CrossRefGoogle Scholar
  47. 47.
    Laux CO (2002) Radiation and nonequilibrium collisional-radiative models. In: Fletcher D, Charbonnier JM, Sarma GSR, Magin T (eds) von Karman Institute Lecture Series 2002–2007, Physico-chemical modeling of high enthalpy and plasma flows. Rhode-Saint-Genèse, BelgiumGoogle Scholar
  48. 48.
    Abdul-Baki AA, Anderson JD (1973) Vigor determination in soybean seed by multiple criteria1. Crop Sci 13:630–633CrossRefGoogle Scholar
  49. 49.
    Houghtby GB, Maturin LJ, Koenig EK, Wesser JW (1992) Microbial count methods. In: Marshall RT (ed) Standard methods for the examination of dairy products, 16th edn. American Public Health Association, Washington, DC, pp 213–216Google Scholar
  50. 50.
    Betina V, Baráthová H, Fargašová A et al (1987) Microbial laboratory methods. Alfa SNTL Publishing House, Bratislava (in Slovak) Google Scholar
  51. 51.
    Fassatiová O (1979) Moulds and filamentous fungi in technical microbiology. SNTL Publishing House, Praha (in Czech) Google Scholar
  52. 52.
    Hudecová D, Jantová S, Melník M, Uher M (1996) New azidometalkojates and their biological activity. Folia Microbiol 41:473–476. doi: 10.1007/BF02814660 CrossRefGoogle Scholar
  53. 53.
    Puntner W (1981) Manual for field trials in plant protection. Ciba-Geigy Ltd, BaselGoogle Scholar
  54. 54.
    Rekanovic E, Potocnik I, Milijasevic-Marcic S et al (2010) Efficacy of seaweed concentrate from Ecklonia maxima (Osbeck) and conventional fungicides in the control of Verticillium wilt of pepper. Pesticidi i fitomedicina 25:319–324. doi: 10.2298/PIF1004319R CrossRefGoogle Scholar
  55. 55.
    Fischer G, Tausz M, Köck M, Grill D (2004) Effects of weak 16 3/2 Hz magnetic fields on growth parameters of young sunflower and wheat seedlings. Bioelectromagnetics 25:638–641. doi: 10.1002/bem.20058 CrossRefGoogle Scholar
  56. 56.
    Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–453CrossRefGoogle Scholar
  57. 57.
    Muraji M, Asai T, Tatebe W (1998) Primary root growth rate of Zea mays seedlings grown in an alternating magnetic field of different frequencies. Bioelectrochem Bioenergy 44:271–273. doi: 10.1016/S0302-4598(97)00079-2 CrossRefGoogle Scholar
  58. 58.
    Giba Z, Grubišic D, Konjevic R (2004) Nitric oxide signaling in higher plants. Studium Press, LLC, HoustonGoogle Scholar
  59. 59.
    Kikuchi K, Koizumi M, Ishida N, Kano H (2006) Water uptake by dry beans observed by micro-magnetic resonance imaging. Ann Bot 98:545–553. doi: 10.1093/aob/mcl145 CrossRefGoogle Scholar
  60. 60.
    Abebe AT, Modi AT (2009) Hydro-priming in dry bean (Phaseolus vulgaris L.). Res J Seed Sci 2:23–31. doi: 10.3923/rjss.2009.23.31 CrossRefGoogle Scholar
  61. 61.
    Dubinov AE, Lazarenko EM, Selemir VD (2000) Effect of glow discharge air plasma on grain crops seed. IEEE Trans Plasma Sci 28:180–183CrossRefGoogle Scholar
  62. 62.
    Henselová M, Slováková Ľ, Martinka M, Zahoranová A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 67:490–497. doi: 10.2478/s11756-012-0046-5 CrossRefGoogle Scholar
  63. 63.
    Stolárik T, Henselová M, Martinka M et al (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process. doi: 10.1007/s11090-015-9627-8 Google Scholar
  64. 64.
    Kobayashi DY, Palumbo JD (2000) Microbial endophytes. Marcel Dekker Inc., New YorkGoogle Scholar
  65. 65.
    Wachowska U, Stasiulewicz-Paluch AD, Głowacka K et al (2013) Response of epiphytes and endophytes isolated from winter wheat grain to biotechnological and fungicydal treatments. Pol J Environ Stud 22:267–273Google Scholar
  66. 66.
    Duan C, Wang X, Zhu Z, Wu X (2007) Testing of seedborne fungi in wheat germplasm conserved in the national crop genebank of China. Agric Sci China 6:682–687. doi: 10.1016/S1671-2927(07)60100-X CrossRefGoogle Scholar
  67. 67.
    Machala Z, Jedlovský I, Chládeková L et al (2009) DC discharges in atmospheric air for bio-decontamination: spectroscopic methods for mechanism identification. Eur Phys J D 54:195–204. doi: 10.1140/epjd/e2009-00035-7 CrossRefGoogle Scholar
  68. 68.
    Sohbatzadeh F, Hosseinzadeh Colagar A, Mirzanejhad S, Mahmodi S (2010) E. coli, P. aeruginosa, and B. cereus bacteria sterilization using afterglow of non-thermal plasma at atmospheric pressure. Appl Biochem Biotechnol 160:1978–1984. doi: 10.1007/s12010-009-8817-3 CrossRefGoogle Scholar
  69. 69.
    Suhem K, Matan N, Nisoa M, Matan N (2013) Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. Int J Food Microbiol 161:107–111. doi: 10.1016/j.ijfoodmicro.2012.12.002 CrossRefGoogle Scholar
  70. 70.
    Kim JE, Lee D-U, Min SC (2014) Microbial decontamination of red pepper powder by cold plasma. Food Microbiol 38:128–136. doi: 10.1016/ CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Zahoranová
    • 1
  • M. Henselová
    • 2
  • D. Hudecová
    • 3
  • B. Kaliňáková
    • 3
  • D. Kováčik
    • 1
  • V. Medvecká
    • 1
  • M. Černák
    • 1
  1. 1.Department of Experimental Physics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia
  2. 2.Department of Plant Physiology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  3. 3.Department of Biochemistry and Microbiology, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations