Advertisement

Plasma Chemistry and Plasma Processing

, Volume 35, Issue 1, pp 201–215 | Cite as

Removal of hydrogen sulfide from methane in a barrier discharge

  • Sergey V. KudryashovEmail author
  • Andrey Yu. Ryabov
  • Andrey N. Ochered’ko
  • Kseniya B. Krivtsova
  • Galina S. Shchyogoleva
Original Paper

Abstract

A process of removal of hydrogen sulfide from methane in a barrier discharge is investigated. A complete removal of hydrogen sulfide is achieved in one pass of the gas mixture through the reactor for the hydrogen sulfide concentration 0.5 vol% and the active discharge power 7 W. Hydrogen, ethane, ethylene, and propane prevail among the gaseous reaction products. Hydrogen is the main product, and the maximum selectivity towards its formation is 77 vol%. Depending on the concentration of hydrogen sulfide, the energy consumption on its removal ranges from 325 to 45 eV molecule−1 and that on conversion of methane and generation of hydrogen from 18 to 12.5 eV molecule−1. The process is accompanied by the formation of deposits on the reactor electrode surfaces. The elemental composition of the deposits is close to the gross formula C1.5H3S and their soluble components contain linear and cyclic organic polysulfides. A possible reaction mechanism is proposed.

Keywords

Barrier discharge Methane Hydrogen sulfide Hydrogen Organic polysulfides Optical diagnostics of plasma 

Notes

Acknowledgments

This work was financially supported by the Program of Fundamental Research for State Academies of Sciences (2013–2020), project No. V.46.2.3.

References

  1. 1.
    Zaman J, Chakma A (1995) Production of hydrogen and sulfur from hydrogen sulfide. Fuel Process Technol 41:159–198CrossRefGoogle Scholar
  2. 2.
    Pandey RA, Malhotra S (1999) Desulfurization of gaseous fuels with recovery of elemental sulfur: an overview. Crit Rev Environ Sci Technol 29:229–268CrossRefGoogle Scholar
  3. 3.
    Yildirim Ö, Kiss AA, Hüser N, Leßmann K, Kenig EY (2012) Reactive absorption in chemical process industry: a review on current activities. Chem Eng J 213:371–391CrossRefGoogle Scholar
  4. 4.
    Fridman A (2008) Plasma chemistry. Cambridge Univ. Press, New YorkCrossRefGoogle Scholar
  5. 5.
    Nunnally T, Gutsol K, Rabinovich A, Fridman A, Starikovsky A, Gutsol A, Potter RW (2009) Dissociation of H2S in non-equilibrium gliding arc “tornado” discharge. Int J Hydrogen Energy 34:7618–7625CrossRefGoogle Scholar
  6. 6.
    Dalaine V, Cormier JM, Lefaucheux P (1998) A gliding discharge applied to H2S destruction. J Appl Phys 83:2435CrossRefGoogle Scholar
  7. 7.
    Gutsol K, Nunnally T, Rabinovich A, Fridman A, Starikovskiy A, Gutsol A, Kemoun A (2012) Plasma assisted dissociation of hydrogen sulfide. Int J Hydrogen Energy 37:1335–1347CrossRefGoogle Scholar
  8. 8.
    Abolentsev VA, Fridman AA, Korobtsev SV, Medvedev DD, Potapkin BV, Rusanov VD, Shiryaevsky VL (1993) Study of plasmochemical oxidation process energized by pulsed barrier discharge with water counter flow. In: Harry J (ed) Int Symp Plasma Chem ISPC-11. Loughborough, p 621–626Google Scholar
  9. 9.
    Traus I, Suhr H (1992) Hydrogen sulfide dissociation in ozonizer discharges and operation of ozonizers at elevated temperatures. Plasma Chem Plasma Process 12:275–285CrossRefGoogle Scholar
  10. 10.
    Huang L, Xia L, Dong W, Hou H (2013) Energy efficiency in hydrogen sulfide removal by non-thermal plasma photolysis technique at atmospheric pressure. Chem Eng J 228:1066–1073CrossRefGoogle Scholar
  11. 11.
    John S, Hamann JC, Muknahallipatna SS, Legowski S, Ackerman JF, Argyle MD (2009) Energy efficiency of hydrogen sulfide decomposition in a pulsed corona discharge reactor. Chem Eng Sci 64:4826–4834CrossRefGoogle Scholar
  12. 12.
    Argyle M, Ackerman J (2004) Novel composite hydrogen-permeable membranes for non-thermal plasma reactors for the decomposition of hydrogen sulfide. http://www.fischer-tropsch.org/DOE/DOE_reports/FC26-03NT41963/FC26-03NT41963-01/ArgyleFC26-03NT41963.pdf. Accessed 16 May 2014
  13. 13.
    Yan N-Q, Qu Z, Jia J-P, Wang X-P, Wu D (2006) Removal characteristics of gaseous sulfur-containing compounds by pulsed corona plasma. Ind Eng Chem Res 45:6420–6427CrossRefGoogle Scholar
  14. 14.
    Jarrige J, Vervisch P (2007) Decomposition of gaseous sulfide compounds in air by pulsed corona discharge. Plasma Chem Plasma Process 27:241–255CrossRefGoogle Scholar
  15. 15.
    Pushkarev AI, Zhu A-M, Li X-S, Sazonov RV (2009) Methane conversion in low-temperature plasma. High Energy Chem 43:156–162CrossRefGoogle Scholar
  16. 16.
    Reddy EL, Biju VM, Subrahmanyam C (2012) Production of hydrogen from hydrogen sulfide assisted by dielectric barrier discharge. Int J Hydrogen Energy 37:2204–2209CrossRefGoogle Scholar
  17. 17.
    Sekine Y, Yamadera J, Matsukata M, Kikuchi E (2010) Simultaneous dry reforming and desulfurization of biomethane with non-equilibrium electric discharge at ambient temperature. Chem Eng Sci 65:487–491CrossRefGoogle Scholar
  18. 18.
    Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol 14:722–733CrossRefGoogle Scholar
  19. 19.
    Viehland database (2014). www.lxcat.net. Accessed 16 May 2014
  20. 20.
    Michelin SE, Kroin T, Lee M-T, Machado LE (1997) Electronic excitation cross sections of H2S by electron impact. J Phys B At Mol Opt Phys 30:2001–2009CrossRefGoogle Scholar
  21. 21.
    Szmytkowski C, Możejko P, Krzysztofowicz A (2003) Measurements of absolute total cross sections for electron scattering from triatomic polar molecules: SO2 and H2S. Radiat Phys Chem 68:307–311CrossRefGoogle Scholar
  22. 22.
    Rawat P, Iga I, Lee M-T, Brescansin LM, Homem MGP, Machado LE (2003) Cross sections for elastic electron–hydrogen sulfide collisions in the low- and intermediate-energy range. Phys Rev A 68:052711CrossRefGoogle Scholar
  23. 23.
    Rao MVVS, Srivastava SK (1993) Electron impact ionization and attachment cross sections for H2S. J Geophys Res 98:13137CrossRefGoogle Scholar
  24. 24.
    Samoĭlovich V, Kozlov K, Gibalov V (1997) Physical chemistry of the barrier discharge. DVS Verlag, DüsseldorfGoogle Scholar
  25. 25.
    Janev RK, Reiter D (2002) Collision processes of CHy and CHy+ hydrocarbons with plasma electrons and protons. Phys Plasmas 9:4071–4081CrossRefGoogle Scholar
  26. 26.
    Continetti R, Balko B, Lee Y (1991) Photodissociation of H2S and the HS radical at 193.3 nm. Chem Phys Lett 182:400–405CrossRefGoogle Scholar
  27. 27.
    Dixon RN, Marston CC, Balint-Kurti GG (1990) Photodissociation dynamics and emission spectroscopy of H2S in its first absorption band: a time dependent quantum mechanical study. J Chem Phys 93:6520–6534CrossRefGoogle Scholar
  28. 28.
    Hsu C-W, Liao C-L, Ma Z-X, Tjossem PJH, Ng CY (1992) A study of the S(3P2,1,0; 1D2) production in the 193 nm photodissociation of HS and H2S. Chem Phys Lett 199:78–84CrossRefGoogle Scholar
  29. 29.
    Kim D-C, Hahn JW, Lee ES, Jung K-H (1997) Photodissociation dynamics of H2S at 266 nm via the degenerate four-wave mixing spectroscopy. Chem Phys Lett 265:573–578CrossRefGoogle Scholar
  30. 30.
    Xie X, Schnieder L, Wallmeier H, Boettner R, Welge КH, Ashfold MNR (1990) Photodissociation dynamics of H2S(D2S) following excitation within its first absorption continuum. J Chem Phys 92:1608–1616CrossRefGoogle Scholar
  31. 31.
    Baulch DL, Cobos CJ, Cox RA, Esser C, Frank P, Just T, Kerr JA, Pilling MJ, Troe J, Walker RW, Warnatz J (1992) Evaluated kinetic data for combustion modelling. J Phys Chem Ref Data 21:411–734CrossRefGoogle Scholar
  32. 32.
    Braun W, McNesby JR, Bass AM (1967) Flash photolysis of methane in the vacuum ultraviolet. II. Absolute rate constants for reactions of CH with methane, hydrogen, and nitrogen. J Chem Phys 46:2071–2080CrossRefGoogle Scholar
  33. 33.
    Halberstadt ML, Crump J (1972) Insertion of methylene into the carbon–hydrogen bonds of the C1 to C4 alkanes. J Photochem 1:295–305CrossRefGoogle Scholar
  34. 34.
    Mousavipour SH, Namdar-Ghanbari MA, Sadeghian L (2003) A theoretical study on the kinetics of hydrogen abstraction reactions of methyl or hydroxyl radicals with hydrogen sulfide. J Phys Chem A 107:3752–3758CrossRefGoogle Scholar
  35. 35.
    Darwin DC, Moore CB (1995) Reaction rate constants (295 K) for 3CH2 with H2S, SO2, and NO2: upper bounds for rate constants with less reactive partners. J Phys Chem 99:13467–13470CrossRefGoogle Scholar
  36. 36.
    Sato K, Wakabayashi S, Matsubara T, Sugiura M, Tsunashima S, Kurosaki Y, Takayanagi T (1999) Kinetics and mechanisms of the reactions of CH and CD with H2S and D2S. Chem Phys 242:1–10CrossRefGoogle Scholar
  37. 37.
    Shum LGS, Benson SW (1985) The pyrolysis of dimethyl sulfide, kinetics and mechanism. Int J Chem Kinet 17:749–761CrossRefGoogle Scholar
  38. 38.
    Schofield K (1973) Evaluated chemical kinetic rate constants for various gas phase reactions. J Phys Chem Ref Data 2:25–84CrossRefGoogle Scholar
  39. 39.
    Peng J, Hu X, Marshall P (1999) Experimental and ab initio investigations of the kinetics of the reaction of H atoms with H2S. J Phys Chem A 103:5307–5311CrossRefGoogle Scholar
  40. 40.
    Fair RW, Thrush BA (1969) Mechanism of S2 chemiluminescence in the reaction of hydrogen atoms with hydrogen sulphide. Trans Faraday Soc 65:1208–1218CrossRefGoogle Scholar
  41. 41.
    Heijden H, Mullen J, Baier J, Körber A (2002) Radiative transfer of a molecular S2 B–X spectrum using semiclassical and quantum-mechanical radiation coefficients. J Phys B At Mol Opt Phys 35:3633–3654CrossRefGoogle Scholar
  42. 42.
    Tiee J, Wampler F, Oldenborg R, Rice W (1981) Spectroscopy and reaction kinetics of HS radicals. Chem Phys Lett 82:80–84CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sergey V. Kudryashov
    • 1
    Email author
  • Andrey Yu. Ryabov
    • 1
  • Andrey N. Ochered’ko
    • 1
  • Kseniya B. Krivtsova
    • 1
  • Galina S. Shchyogoleva
    • 1
  1. 1.Institute of Petroleum ChemistrySiberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations