Advertisement

Plasma Chemistry and Plasma Processing

, Volume 34, Issue 4, pp 801–810 | Cite as

Removal of Volatile Organic Compounds (VOCs) at Room Temperature Using Dielectric Barrier Discharge and Plasma-Catalysis

  • Yizhuo Li
  • Zeyun Fan
  • Jianwei Shi
  • Zhenyan Liu
  • Jiwen Zhou
  • Wenfeng ShangguanEmail author
Original Paper

Abstract

Non-thermal plasma (NTP) was produced in a dielectric barrier discharge reactor for degradation of acetaldehyde and benzene, respectively. The effect of volatile organic compounds (VOCs) chemical structure on the reaction was investigated. In addition, acetaldehyde was removed in different background gas. The results showed that, no matter in nitrogen, air or oxygen, NTP technology always exhibited high acetaldehyde removal efficiency at ambient temperature. However, it also caused some toxicity by-product such as NOx and ozone. Meanwhile, some intermediates such as acetic acid, amine and nitromethane were formed and resulted in low carbon dioxide selectivity. To solve above problems, Co–OMS-2 catalysts were synthesized and combined with plasma. It was found that, the introduction of catalysts improved VOCs removal efficiency and inhibited by-product formation of plasma significantly. The plasma-catalysis system was operated in a recycling experiment to investigate its stability. The acetaldehyde removal efficiency can be kept at 100 % in the whole process. However, slight deactivation in ozone control was observed at the later stage of the experiment, which may be ascribed to deposition of VOCs on the catalysts surface and reduction of catalysts surface area.

Keywords

Plasma Catalysis VOCs degradation Co–OMS-2 catalyst 

Notes

Acknowledgments

The authors will thank the National High Technology Research and Development Program (863 Program) of China (2010AA064907) for its supports.

References

  1. 1.
    Mok YS, Lee SB, Oh JH, Ra KS, Sung BH (2008) Plasma Chem Plasma Process 28:663–676CrossRefGoogle Scholar
  2. 2.
    Ramos ME, Bonelli PR, Cukierman AL, Ribeiro Carrott MML, Carrott PJM (2010) J Hazard Mater 177:175–182CrossRefGoogle Scholar
  3. 3.
    Liotta LF (2010) Appl Catal B: Environ 100:403–412CrossRefGoogle Scholar
  4. 4.
    Wang Z, Xiu G, Qiao T, Zhao K, Zhang D (2013) Bioresour Technol 130:52–58CrossRefGoogle Scholar
  5. 5.
    Sleiman M, Conchon P, Ferronato C, Chovelon J (2009) Appl Catal B: Environ 86:159–165CrossRefGoogle Scholar
  6. 6.
    Vandenbroucke AM, Morent R, Geyter ND, Leys C (2011) J Hazard Mater 195:30–54CrossRefGoogle Scholar
  7. 7.
    Huang X, Yuan J, Shi JW, Shangguan WF (2009) J Hazard Mater 171:827–832CrossRefGoogle Scholar
  8. 8.
    Huang H, Ye D, Guan X (2008) Catal Today 139:43–48CrossRefGoogle Scholar
  9. 9.
    Harling AM, Glover DJ, Whitehead JC, Zhang K (2009) Appl Catal B: Environ 90:157–161CrossRefGoogle Scholar
  10. 10.
    Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Environ Sci Technol 43:2216–2227CrossRefGoogle Scholar
  11. 11.
    Simiand NB, Pasquiers S, Jorand F, Postel C, Vacher JR (2009) J Phys D Appl Phys 44:122003CrossRefGoogle Scholar
  12. 12.
    Liao X, Guo Y, He J, Ou W, Ye D (2010) Plasma Chem Plasma Process 30:841–853CrossRefGoogle Scholar
  13. 13.
    Durme JV, Dewulf J, Leys C, Langenhove HV (2008) Appl Catal B: Environ 78:324–333CrossRefGoogle Scholar
  14. 14.
    Subrahmanyam C, Renken A, Minsker LK (2007) Chem Eng J 134:78–83CrossRefGoogle Scholar
  15. 15.
    Zhao D, Li X, Shi C, Fan H, Zhu A (2011) Chem Eng Sci 66:3922–3929CrossRefGoogle Scholar
  16. 16.
    Marotta E, Callea A, Rea M, Paradisi C (2007) Environ Sci Technol 41:5862–5868CrossRefGoogle Scholar
  17. 17.
    Subrahmanyam Ch, Renken A, Minsker LK (2010) Chem Eng J 160:677–682CrossRefGoogle Scholar
  18. 18.
    Takaki K, Hatanaka Y, Arima K, Mukaigawa S, Fujiwara T (2009) Vacuum 83:128–132CrossRefGoogle Scholar
  19. 19.
    DeGuzman RN, Shen Y, Neth EJ, Suib SL, O’Young C, Levine S, Newsam JM (1994) Chem Mater 6:815–821CrossRefGoogle Scholar
  20. 20.
    Bo Z, Yan J, Li X, Chi Y, Cen K (2009) J Hazard Mater 166:1210–1216CrossRefGoogle Scholar
  21. 21.
    Liu YN, Braci L, Cavadias S, Ognier S (2011) J Phys D Appl Phys 44:095202CrossRefGoogle Scholar
  22. 22.
    Einaga H, Ogata A (2009) J Hazard Mater 164:1236–1241CrossRefGoogle Scholar
  23. 23.
    Radhakrishnan R, Oyama ST (2001) J Phys Chem B 105:4245–4253CrossRefGoogle Scholar
  24. 24.
    Li WN, Yuan J, Mower SG, Sithambaram S, Suib SL (2006) J Phys Chem B 110:3066–3070CrossRefGoogle Scholar
  25. 25.
    Hu B, Chen C, Frueh SJ, Jin L, Joesten R, Suib SL (2010) J Phys Chem C 114:9835–9844CrossRefGoogle Scholar
  26. 26.
    Julien CM, Massot M, Poinsignon C (2004) Spectrochim Acta A 60:689–700CrossRefGoogle Scholar
  27. 27.
    Gao T, Glerup M, Krumeich F, Nesper R, Fjellvag H, Norby P (2008) J Phys Chem C 112:13134–13140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yizhuo Li
    • 1
  • Zeyun Fan
    • 1
  • Jianwei Shi
    • 1
    • 2
  • Zhenyan Liu
    • 1
  • Jiwen Zhou
    • 1
  • Wenfeng Shangguan
    • 1
    • 2
    Email author
  1. 1.Research Center for Combustion and Environment TechnologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations