Plasma Chemistry and Plasma Processing

, Volume 32, Issue 5, pp 875–917 | Cite as

Analysis and Review of Chemical Reactions and Transport Processes in Pulsed Electrical Discharge Plasma Formed Directly in Liquid Water

Review Paper

Abstract

Electrical discharges formed directly in liquid water include three general cases where (a) streamer-like plasma channels form in, but do not span, the electrode gap, (b) spark discharges produce transient plasma channels that span the electrode gap, and (c) arc discharges form plasma channels with relatively longer life times. Other factors including the input energy (from <1 J/pulse to >1 kJ/pulse) as well as solution properties and the rates of energy delivery affect the nature of the discharge channels. An understanding of the formation of chemical species, including the highly reactive hydroxyl radical and more stable molecular species such as hydrogen and hydrogen peroxide, in such plasma requires determination of temporal and spatial variations of temperature, pressure, plasma volume, and electrical characteristics including current, voltage (electric field), and plasma conductivity. In spark and arc discharges analysis of the physical processes has focused on hydrodynamic and thermal characterization, while only a limited amount of work has connected these physical processes to chemical reactions. On the other hand, the most successful model of the chemical reactions in streamer-like discharges relies on simple assumptions concerning the temperature and pressure in the plasma channels, while analysis of the physical processes is more limited. This paper reviews the literature on the mathematical modeling of electrical discharges in liquid water spanning the range from streamer-like to spark and arc discharges, and compares the properties and processes in these electrical discharges to those in electron beam radiolysis and ultrasound.

Keywords

Pulsed electrical discharge Liquid water Streamer-like discharge Arc discharge Spark discharge 

References

  1. 1.
    Locke B (2009) Plasma Proc Polym 6:711–712CrossRefGoogle Scholar
  2. 2.
    Locke BR, Sunka P, Sato M, Hoffmann M, Chang JS (2006) Ind Eng Chem Res 45:882–905CrossRefGoogle Scholar
  3. 3.
    Akiyama H (2000) IEEE Trans Dielectr Electr Insul 7:646–653CrossRefGoogle Scholar
  4. 4.
    Malik MA, Ghaffar A, Malik SA (2001) Plasma Sources Sci Technol 10:82–91ADSCrossRefGoogle Scholar
  5. 5.
    Bruggeman P, Leys C (2009) J Phys D Appl Phys 42:1–28CrossRefGoogle Scholar
  6. 6.
    Locke BR, Shih K-Y (2011) Plasma Sources Sci Technol 20:034006ADSCrossRefGoogle Scholar
  7. 7.
    Locke BR, Lukes P, Brisset JL (2012) In: Parvulescu VI, Magureanu M, Lukes P (eds) Plasma chemistry and catalysis in gases and liquids. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  8. 8.
    Lukes P, Locke BR, Brisset JL (2012) In: Parvulescu VI, Magureanu M, Lukes P (eds) Plasma chemistry and catalysis in gases and liquids. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  9. 9.
    Lukes P, Brisset JL, Locke BR (2012) In: Parvulescu VI, Magureanu M, Lukes P (eds) Plasma chemistry and catalysis in gases and liquids. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  10. 10.
    Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Surf Coat Technol 122:73–93CrossRefGoogle Scholar
  11. 11.
    Laroussi M (2000) IEEE Trans Plasma Sci 28:184–188ADSCrossRefGoogle Scholar
  12. 12.
    Laroussi M (2009) IEEE Trans Plasma Sci 37:714–725ADSCrossRefGoogle Scholar
  13. 13.
    Kuskova NI (2001) Tech Phys 46:182–185CrossRefGoogle Scholar
  14. 14.
    Sugiarto AT, Sato M, Skalny JD (2001) J Phys D Appl Phys 34:3400–3406ADSCrossRefGoogle Scholar
  15. 15.
    Sugiarto AT, Sato M (2001) Thin Solid Films 386:295–299ADSCrossRefGoogle Scholar
  16. 16.
    Ceccato PH, Guaitella O, Le Gloahec MR, Rousseau A (2010) J Phys D Appl Phys 43:175202ADSCrossRefGoogle Scholar
  17. 17.
    Nasser E (1971) Fundamentals of gaseous ionization and plasma electronics. Wiley-Interscience, New YorkGoogle Scholar
  18. 18.
    Joshi RP, Qian J, Zhao G, Kolb J, Schoenbach KH, Schamiloglu E, Gaudet J (2004) J Appl Phys 96:5129–5139ADSCrossRefGoogle Scholar
  19. 19.
    Starikovskiy A, Yang Y, Cho YI, Fridman A (2011) Plasma Sources Sci Technol 20:024003ADSCrossRefGoogle Scholar
  20. 20.
    Freeman GR (1987) Kinetics of nonhomogeneous processes: a practical introduction for chemists, biologists, physicists, and materials scientists. Wiley, New YorkGoogle Scholar
  21. 21.
    Magee JL, Chatterjee A (1987) In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry, principles and applications. VCH Publishers, Inc., New YorkGoogle Scholar
  22. 22.
    Mozumder A (1999) Fundamentals of radiation chemistry. Academic Press, San DiegoGoogle Scholar
  23. 23.
    Chatterjee A (1987) In: Farhataziz, Rodgers M (eds) Radiation chemistry principles and applications. VCH Publishers, Inc., New YorkGoogle Scholar
  24. 24.
    Chatterjee A, Magde D (1987) In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry, principles and applications. VCH Publishers, New YorkGoogle Scholar
  25. 25.
    Buxton GV (1987) In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry, principles and applications. VCH, Weinheim, GermanyGoogle Scholar
  26. 26.
    Leighton TG (1994) The acoustic bubble. Academic Press, San DiegoGoogle Scholar
  27. 27.
    Kennedy PK, Hammer DX, Rockwell BA (1997) Prog Quantum Electron 21:155–248ADSCrossRefGoogle Scholar
  28. 28.
    Tarr MA (ed) (2003) Chemical degradation methods for wastes and pollutants, environmental and industrial applications. Marcel Dekker, New YorkGoogle Scholar
  29. 29.
    Clements JS, Sato M, Davis RH (1987) IEEE Trans Ind Appl 23:224–235CrossRefGoogle Scholar
  30. 30.
    Joshi AA, Locke BR, Arce P, Finney WC (1995) J Haz Mater 41:3–30CrossRefGoogle Scholar
  31. 31.
    Klimkin VF (1990) Sov Tech Phys Lett 16:146–148Google Scholar
  32. 32.
    An W, Baumung K, Bluhm H (2007) J Appl Phys 101:053302ADSCrossRefGoogle Scholar
  33. 33.
    Lisitsyn IV, Nomiyama H, Katsuki S, Akiyama H (1999) IEEE Trans Dielectr Electr Insul 6:351–356CrossRefGoogle Scholar
  34. 34.
    Klimkin VF, Ponomarenko AG (1979) Sov Phys Tech Phys 24:1067–1070Google Scholar
  35. 35.
    Sunka P (2001) Phys Plasmas 8:2587–2594ADSCrossRefGoogle Scholar
  36. 36.
    Sunka P, Babicky V, Clupek M, Lukes P, Simek M, Schmidt J, Cernak M (1999) Plasma Sources Sci Technol 8:258–265ADSCrossRefGoogle Scholar
  37. 37.
    Shih K, Locke B (2011) IEEE Trans Plasma Sci 39:883–892ADSCrossRefGoogle Scholar
  38. 38.
    Castellanos A (ed) (1998) Electrohydrodynamics. Springer, WienMATHGoogle Scholar
  39. 39.
    Lukes P, Clupek M, Babicky V, Sunka P (2008) Plasma Sources Sci Technol 17:024012ADSCrossRefGoogle Scholar
  40. 40.
    Goryachev VL, Rutberg FG, Ufimtsev AA (1998) Tech Phys Lett 24:122–123ADSCrossRefGoogle Scholar
  41. 41.
    Klassen NV (1987) In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry principles and applications. VCH, New YorkGoogle Scholar
  42. 42.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513–614ADSCrossRefGoogle Scholar
  43. 43.
    Parlitz U, Mettin R, Luther S, Akhatov I, Voss M, Lauterborn W (1999) Philos Trans R Soc Lond Ser A-Math Phys Eng Sci 357:313–334ADSCrossRefGoogle Scholar
  44. 44.
    Ashokkumar M, Lee J, Kentish S, Grieser F (2007) Ultrason Sonochem 14:470–475CrossRefGoogle Scholar
  45. 45.
    Lauterborn W, Kurz T, Geisler R, Schanz D, Lindau O (2007) Ultrason Sonochem 14:484–491CrossRefGoogle Scholar
  46. 46.
    Lauterborn W, Ohl C-D (1997) Ultrason Sonochem 4:65–75CrossRefGoogle Scholar
  47. 47.
    Storey BD, Szeri AJ (2000) Proc R Soc Lond Ser A-Math Phys Eng Sci 456:1685–1709MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Sahni M, Locke BR (2006) Ind Eng Chem Res 45:5819–5825CrossRefGoogle Scholar
  49. 49.
    Plante I, Cucinotta FA (2009) New J Phys 11:063047. doi:06304710.1088/1367-2630/11/6/063047 CrossRefGoogle Scholar
  50. 50.
    Pimblott SM, LaVerne JA (1998) Radiat Res 150:159–169CrossRefGoogle Scholar
  51. 51.
    Starikovskiy A, Yang Y, Cho YI, Fridman A (2011) IEEE Trans Plasma Sci 39:2668–2669ADSCrossRefGoogle Scholar
  52. 52.
    Sigrist MW (1986) J Appl Phys 60:R83–R121ADSCrossRefGoogle Scholar
  53. 53.
    Askaryan GA, Prokhorov AM, Chanturiya GF, Shipulo GP (1963) Sov Phys 17:1463–1465Google Scholar
  54. 54.
    Shcherbakov IA (2011) Her Russ Acad Sci 81:271–275CrossRefGoogle Scholar
  55. 55.
    Davies RA, Hickling A (1952) J Chem Soc, Farad Trans 3595–3602Google Scholar
  56. 56.
    Hickling A, Linacre JK (1952) J Chem Soc, Farad Trans 711–720Google Scholar
  57. 57.
    Hickling A, Ingram MD (1964) Trans Faraday Soc 60:783–793CrossRefGoogle Scholar
  58. 58.
    Hickling A (1971) In: Bockris JOM, Conway BE (eds) Modern aspects of electrochemistry, vol 6. Plenum Press, New YorkGoogle Scholar
  59. 59.
    Thornton TD, Savage PE (1990) J Supercrit Fluids 3:240–248CrossRefGoogle Scholar
  60. 60.
    Brock EE, Savage PE (1995) AIChE J 41:1874–1888CrossRefGoogle Scholar
  61. 61.
    Gloyna EF, Li LX (1995) Environ Prog 14:182–192CrossRefGoogle Scholar
  62. 62.
    Nunoura T, Lee GH, Matsumura Y, Yamamoto K (2002) Chem Eng Sci 57:3061–3071CrossRefGoogle Scholar
  63. 63.
    Cao SL, Chen GH, Hu XJ, Yue PL (2003) Catal Today 88:37–47CrossRefGoogle Scholar
  64. 64.
    Nunoura T, Lee G, Matsumura Y, Yamamoto K (2003) Ind Eng Chem Res 42:3522–3531CrossRefGoogle Scholar
  65. 65.
    Bhattacharya M, Basak T, Senagala R (2011) Chem Eng Sci 66:5832–5851CrossRefGoogle Scholar
  66. 66.
    Ushakov VY, Klimkin VF, Korobeynikov SM (2007) Impulse breakdown of liquids. Springer, BerlinGoogle Scholar
  67. 67.
    Ioffe AI, Kozhelup Ng, Naugolny Ka, Roi NA (1967) Sov Phys Acoustics 13:180–183Google Scholar
  68. 68.
    Ioffe AI (1966) J Appl Mech Tech Phys 7:69–77Google Scholar
  69. 69.
    Kratel AWH (1996) Pulsed power discharge in water. PhD, California Institute of TechnologyGoogle Scholar
  70. 70.
    Gidalevich E, Boxman RL, Goldsmith S (2004) J Phys D Appl Phys 37:1509–1514CrossRefGoogle Scholar
  71. 71.
    Gidalevich E, Boxman RL (2006) Plasma Sources Sci Technol 15:765–772ADSCrossRefGoogle Scholar
  72. 72.
    Gidalevich E, Boxman RL (2006) J Phys D Appl Phys 39:652–659ADSCrossRefGoogle Scholar
  73. 73.
    Evans MW, Ablow CM (1961) Chem Rev 61:129–178CrossRefGoogle Scholar
  74. 74.
    Cole RH (1948) Underwater explosions. Princeton University Press, PrincetonGoogle Scholar
  75. 75.
    Rayleigh L (1917) Philos Mag 34:94–98MATHCrossRefGoogle Scholar
  76. 76.
    Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New YorkGoogle Scholar
  77. 77.
    Deen WM (2012) Analysis of transport phenomena, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  78. 78.
    Landau L, Lifshitz E (1984) Fluid mechanics, vol 6. Course of theoretical physics. Pergamon Press, OxfordGoogle Scholar
  79. 79.
    Hayward ATJ (1967) Br J Appl Phys 18:965ADSCrossRefGoogle Scholar
  80. 80.
    Robinson JW (1973) J Appl Phys 44:76–81ADSCrossRefGoogle Scholar
  81. 81.
    Jeffery CA, Austin PH (1999) J Chem Phys 110:484–496ADSCrossRefGoogle Scholar
  82. 82.
    Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of continuous media. Pergamon Press, OxfordGoogle Scholar
  83. 83.
    Onsager L (1936) J Am Chem Soc 58:1486–1493CrossRefGoogle Scholar
  84. 84.
    Kirkwood JG (1939) J Chem Phys 7:911–919ADSCrossRefGoogle Scholar
  85. 85.
    Frohlich H (1958) Theory of dielectrics. Oxford University Press, LondonGoogle Scholar
  86. 86.
    Krivitskii EV (1991) Sov Phys Tech Phys 36:4–7Google Scholar
  87. 87.
    Kosenkov VM, Kuskova NI (1987) Sov Phys Tech Phys 32:1215–1217Google Scholar
  88. 88.
    Kuskova NI (1989) Sov Tech Phys Lett 15:936–937Google Scholar
  89. 89.
    Kuskova NI (1983) Sov Phys Tech Phys 28:591–592Google Scholar
  90. 90.
    Krivitskii EV, Slivinskii AP (1985) Zhurnal Tek Fiz 55:1553–1558Google Scholar
  91. 91.
    Korobeinikov SM, Yanshin EV (1983) Sov Phys Tech Phys 28:1288–1290Google Scholar
  92. 92.
    Joshi RP, Qian J, Schoenbach KH, Schamiloglu E (2004) J Appl Phys 96:3617–3625ADSCrossRefGoogle Scholar
  93. 93.
    Watson PK (1985) IEEE Trans Elect Insul EI 20:395–399CrossRefGoogle Scholar
  94. 94.
    Korobeinikov SM (1998) High Temp 36:517–523Google Scholar
  95. 95.
    Lu X, Pan Y, Liu M, Zhang H (2002) J Appl Phys 91:24–31ADSCrossRefGoogle Scholar
  96. 96.
    Keller JB, Kolodner II (1956) J Appl Phys 27:1152–1161ADSCrossRefGoogle Scholar
  97. 97.
    Cook JA, Gleeson AM, Roberts RM, Rogers RL (1997) J Acoust Soc Am 101:1908–1920ADSCrossRefGoogle Scholar
  98. 98.
    Martin EA (1960) J Appl Phys 31:255–267ADSCrossRefGoogle Scholar
  99. 99.
    Lan S, Yang JX, Samee A, Jiang JL, Zhou ZQ (2009) Plasma Sci Technol 11:481–486ADSCrossRefGoogle Scholar
  100. 100.
    Melcher JR (1981) Continuum electromechanics. The MIT Press, CambridgeGoogle Scholar
  101. 101.
    Woodson HH, Melcher JR (1968) Electromechanical dynamics, part I: discrete systems. Wiley, New YorkGoogle Scholar
  102. 102.
    Woodson HH, Melcher JR (1985) Electromechanical dynamics part II: fields, forces, and motion. Robert E. Krieger Publishing Company, MalabarGoogle Scholar
  103. 103.
    Woodson HH, Melcher JR (1985) Electromechanical dynamics part III: elastic and fluid media. Robert E. Krieger Publishing Company, MalabarGoogle Scholar
  104. 104.
    Raizer Y (1997) Gas discharge physics. Springer, BerlinGoogle Scholar
  105. 105.
    Bessieres D, Paillol J, Bourdon A, Segur P, Marode E (2007) J Phys D Appl Phys 40:6559–6570ADSCrossRefGoogle Scholar
  106. 106.
    Marode E, Djermoune D, Dessante P, Deniset C, Segur P, Bastien F, Bourdon A, Laux C (2009) Plasma Phys Control Fusion 51:124002ADSCrossRefGoogle Scholar
  107. 107.
    Babaeva NY, Kushner MJ (2009) J Phys D Appl Phys 42:132003ADSCrossRefGoogle Scholar
  108. 108.
    Sommers BS, Foster JE, Babaeva NY, Kushner MJ (2011) J Phys D Appl Phys 44:082001ADSCrossRefGoogle Scholar
  109. 109.
    Zhekul VG, Rakovskii GB (1983) Sov Phys Tech Phys 28:4–8Google Scholar
  110. 110.
    Qian J, Joshi RP, Kolb J, Schoenbach KH, Dickens J, Neuber A, Butcher M, Cevallos M, Krompholz H, Schamiloglu E, Gaudet J (2005) J Appl Phys 97:113304ADSCrossRefGoogle Scholar
  111. 111.
    Kolb JF, Joshi RP, Xiao S, Schoenbach KH (2008) J Phys D Appl Phys 41:234007ADSCrossRefGoogle Scholar
  112. 112.
    Joshi RP, Kolb JF, Xiao S, Schoenbach KH (2009) Plasma Process Polym 6:763–777CrossRefGoogle Scholar
  113. 113.
    Jones HM, Kunhardt EE (1995) J Phys D Appl Phys 28:178–188ADSCrossRefGoogle Scholar
  114. 114.
    Kuskova NI (1998) Tech Phys Lett 24:559–560ADSCrossRefGoogle Scholar
  115. 115.
    Jones HM, Kunhardt EE (1995) J Appl Phys 77:795–805ADSCrossRefGoogle Scholar
  116. 116.
    Epstein PS, Plesset MS (1950) J Chem Phys 18:1505–1509ADSCrossRefGoogle Scholar
  117. 117.
    Atrazhev VM, Vorob’ev VS, Timoshkin IV, Given MJ, MacGregor SJ (2010) IEEE Trans Plasma Sci 38:2644–2651CrossRefGoogle Scholar
  118. 118.
    Halpern B, Gomer R (1969) J Chem Phys 51:1031–1047ADSCrossRefGoogle Scholar
  119. 119.
    Shih K, Locke B (2009) Plasma Proc Polym 6:729–740CrossRefGoogle Scholar
  120. 120.
    Shih K, Locke B (2010) Plasma Chem Plasma Process 30:1–20CrossRefGoogle Scholar
  121. 121.
    Yang GQ, Du B, Fan LS (2007) Chem Eng Sci 62:2–27CrossRefGoogle Scholar
  122. 122.
    Ohta M, Kikuchi D, Yoshida Y, Sussman M (2011) Int J Multiph Flow 37:1059–1071CrossRefGoogle Scholar
  123. 123.
    Ma D, Liu MY, Zu YG, Tang C (2012) Chem Eng Sci 72:61–77CrossRefGoogle Scholar
  124. 124.
    Hu SY, Henager CH, Heinisch HL, Stan M, Baskes MI, Valone SM (2009) J Nucl Mater 392:292–300ADSCrossRefGoogle Scholar
  125. 125.
    de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover Publications, Inc., New YorkGoogle Scholar
  126. 126.
    Zeldovich YB, Raizer YP (2001) Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publications, Inc., MineolaGoogle Scholar
  127. 127.
    Timoshkin IV, Fouracre RA, Given MJ, MacGregor SJ (2006) J Phys D Appl Phys 39:4808–4817ADSCrossRefGoogle Scholar
  128. 128.
    Schaper L, Stalder KR, Graham WG (2011) Plasma Sources Sci Technol 20:034004ADSCrossRefGoogle Scholar
  129. 129.
    Schaper L, Graham WG, Stalder KR (2011) Plasma Sources Sci Technol 20:034003ADSCrossRefGoogle Scholar
  130. 130.
    Mededovic S, Locke B (2007) J Phys D Appl Phys 40:7734–7746. doi:10.1088/0022-3727/40/24/021 ADSCrossRefGoogle Scholar
  131. 131.
    Mededovic S, Locke B (2009) J Phys D Appl Phys 42:049801ADSCrossRefGoogle Scholar
  132. 132.
    Matsunaga N, Nagashima A (1983) J Phys Chem 87:5268–5279CrossRefGoogle Scholar
  133. 133.
    Wagner W, Pruss A (2002) J Phys Chem Ref Data 31:387–535ADSCrossRefGoogle Scholar
  134. 134.
    Wagner W, Pruss A (1993) J Phys Chem Ref Data 22:783–787ADSCrossRefGoogle Scholar
  135. 135.
    Vasic A, Cheng SC, Groeneveld DC (1992) Nucl Eng Des 132:367–379CrossRefGoogle Scholar
  136. 136.
    Starchyk PD, Porytskyy PV (2011) Probl At Sci Tech pp 140–142Google Scholar
  137. 137.
    Starchyk PD, Porytskyy PV (2008) Probl At Sci Tech pp 207–209Google Scholar
  138. 138.
    Aubreton J, Elchinger MF, Vinson JM (2009) Plasma Chem Plasma Process 29:149–171CrossRefGoogle Scholar
  139. 139.
    Coufal O (2007) J Phys D-Appl Phys 40:3371–3385ADSCrossRefGoogle Scholar
  140. 140.
    Bradley DJ, Pitzer KS (1979) J Phys Chem 83:1599–1603CrossRefGoogle Scholar
  141. 141.
    Pitzer KS (1983) Proc Nat Acad Sci USA Phys Sci 80:4575–4576ADSCrossRefGoogle Scholar
  142. 142.
    Booth F (1951) J Chem Phys 19:1327–1328MathSciNetADSCrossRefGoogle Scholar
  143. 143.
    Booth F (1951) J Chem Phys 19:391–394MathSciNetADSCrossRefGoogle Scholar
  144. 144.
    Booth F (1955) J Chem Phys 23:453–457ADSCrossRefGoogle Scholar
  145. 145.
    Fulton RL (2009) J Chem Phys 130:204503ADSCrossRefGoogle Scholar
  146. 146.
    Spitzer L (1962) Physics of fully ionized gases. Dover Publications, Inc., MineolaGoogle Scholar
  147. 147.
    Krivitskii EV, Shamko VV (1972) Sov Phys Tech Phys 17:62–65ADSGoogle Scholar
  148. 148.
    Gurovich VT, Grinenko A, Krasik YE, Felsteiner J (2004) Phys Rev E 69:036402ADSCrossRefGoogle Scholar
  149. 149.
    Robinson JW (1967) J Appl Phys 38:210–215ADSCrossRefGoogle Scholar
  150. 150.
    Robinson JW, Ham M, Balaster AN (1973) J Appl Phys 44:72–75ADSCrossRefGoogle Scholar
  151. 151.
    Namihira T, Sakai S, Yamaguchi T, Yamamoto K, Yamada C, Kiyan T, Sakugawa T, Katsuki S, Akiyama H (2007) IEEE Trans Plasma Sci 35:614–618ADSCrossRefGoogle Scholar
  152. 152.
    Bruggeman P, Schram DC (2010) Plasma Sources Sci Technol 19:045025ADSCrossRefGoogle Scholar
  153. 153.
    Graneau P, Graneau PN (1985) Appl Phys Lett 46:468–470ADSCrossRefGoogle Scholar
  154. 154.
    Azevedo R, Graneau P, Millet C, Graneau N (1986) Phys Lett A 117:101–105ADSCrossRefGoogle Scholar
  155. 155.
    Dragone L (1987) J Appl Phys 62:3477–3479ADSCrossRefGoogle Scholar
  156. 156.
    Graneau P, Graneau N, Hathaway G, Hull RL (2000) J Plasma Phys 63:115–128ADSCrossRefGoogle Scholar
  157. 157.
    Morgan WL, Rosocha LA (2012) Chem Phys 398:255–261ADSCrossRefGoogle Scholar
  158. 158.
    Saha MN (1920) Philos Mag 40:472–488CrossRefGoogle Scholar
  159. 159.
    Fridman A (2008) Plasma chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  160. 160.
    Moss WC, Clarke DB, Young DA (1997) Science 276:1398–1401CrossRefGoogle Scholar
  161. 161.
    Zolotoy NB, Karpov GV (1998) J Chem Phys 109:4938–4947ADSCrossRefGoogle Scholar
  162. 162.
    Zolotoy NB (2007) Chem Phys 332:73–78ADSCrossRefGoogle Scholar
  163. 163.
    Frenkel J (1938) Phys Rev 54:647–648ADSCrossRefGoogle Scholar
  164. 164.
    Clifford P, Green NJB, Oldfield MJ, Pilling MJ, Pimblott SM (1986) J Chem Soc, Faraday Trans 82:2673–2689CrossRefGoogle Scholar
  165. 165.
    Pimblott SM, LaVerne JA (1990) Radiat Res 122:12–23CrossRefGoogle Scholar
  166. 166.
    Pimblott SM, LaVerne JA, Mozumder A (1996) J Phys Chem 100:8595–8606CrossRefGoogle Scholar
  167. 167.
    Pimblott SM, LaVerne JA (1997) J Phys Chem A 101:5828–5838CrossRefGoogle Scholar
  168. 168.
    Plante I (2011) Radiat Environ Biophys 50:405–415CrossRefGoogle Scholar
  169. 169.
    Plante I (2011) Radiat Environ Biophys 50:389–403CrossRefGoogle Scholar
  170. 170.
    Dingfelder M, Ritchie RH, Turner JE, Friedland W, Paretzke HG, Hamm RN (2008) Radiat Res 169:584–594CrossRefGoogle Scholar
  171. 171.
    Toburen LH (2012) Int J Radiat Biol 88:2–9CrossRefGoogle Scholar
  172. 172.
    Francis Z, Incerti S, Ivanchenko V, Champion C, Karamitros M, Bernal MA, El Bitar Z (2012) Phys Med Biol 57:209–224CrossRefGoogle Scholar
  173. 173.
    Uehara S, Nikjoo H (2006) J Radiat Res 47:69–81CrossRefGoogle Scholar
  174. 174.
    Nikjoo H, Uehara S, Emfietzoglou D, Cucinotta FA (2006) Radiat Meas 41:1052–1074CrossRefGoogle Scholar
  175. 175.
    Frongillo Y, Goulet T, Fraser MJ, Cobut V, Patau JP, Jay-Gerin JP (1998) Radiat Phys Chem 51:245–254ADSCrossRefGoogle Scholar
  176. 176.
    Cobut V, Frongillo Y, Patau JP, Goulet T, Fraser MJ, Jay-Gerin JP (1998) Radiat Phys Chem 51:229–243ADSCrossRefGoogle Scholar
  177. 177.
    Uehara S, Nikjoo H, Goodhead DT (1993) Phys Med Biol 38:1841–1858CrossRefGoogle Scholar
  178. 178.
    Dessauer F (1923) Z Phys 20:288–298ADSCrossRefGoogle Scholar
  179. 179.
    Dessauer F (1923) Z Phys 12:38–47ADSCrossRefGoogle Scholar
  180. 180.
    Delarubia TD, Averback RS, Benedek R, King WE (1987) Phys Rev Lett 59:1930–1933ADSCrossRefGoogle Scholar
  181. 181.
    Hochanadel CJ (1962) Radiat Res 16:286–301CrossRefGoogle Scholar
  182. 182.
    Surdutovich E, Yakubovich AV, Solov’yov AV (2010) Eur Phys J D 60:101–108ADSCrossRefGoogle Scholar
  183. 183.
    Mozumder A (2002) Phys Chem Chem Phys 4:1451–1456CrossRefGoogle Scholar
  184. 184.
    McNesby JR, Okabe H, Tanaka I (1962) J Chem Phys 36:605–607ADSCrossRefGoogle Scholar
  185. 185.
    Stief LJ, Payne WA, Klemm RB (1975) J Chem Phys 62:4000–4008ADSCrossRefGoogle Scholar
  186. 186.
    Sokolov U, Stein G (1966) J Chem Phys 44:2189–2192ADSCrossRefGoogle Scholar
  187. 187.
    Sokolov U, Stein G (1966) J Chem Phys 44:3329–3337ADSCrossRefGoogle Scholar
  188. 188.
    Schwarz HA (1969) J Phys Chem 73:1928–1937CrossRefGoogle Scholar
  189. 189.
    Colussi AJ, Weavers LK, Hoffmann MR (1998) J Phys Chem A 102:6927–6934CrossRefGoogle Scholar
  190. 190.
    Hua I, Hoffmann MR (1997) Environ Sci Technol 31:2237–2243CrossRefGoogle Scholar
  191. 191.
    Sivasankar T, Moholkar VS (2009) Chem Eng J 149:57–69CrossRefGoogle Scholar
  192. 192.
    Togel R (2002) Reaction-diffusion kinetics of a single sonoluminescing bubble. University of Twente, TwenteGoogle Scholar
  193. 193.
    Davis EJ (2006) Atmos Res 82:561–578CrossRefGoogle Scholar
  194. 194.
    Theofano T, Biasi L, Isbin HS, Fauske H (1969) Chem Eng Sci 24:885–897CrossRefGoogle Scholar
  195. 195.
    Carey VP (2008) Liquid-vapor phase-change phenomena, 2nd edn. Taylor and Francis, New YorkGoogle Scholar
  196. 196.
    Schrage R (1953) A theoretical study of interphase mass transfer. Columbia University Press, New YorkGoogle Scholar
  197. 197.
    Hanson DR, Burkholder JB, Howard CJ, Ravishankara AR (1992) J Phys Chem 96:4979–4985CrossRefGoogle Scholar
  198. 198.
    Morita A, Kanaya Y, Francisco JS (2004) J Geophys Res-Atmos 109:459–473CrossRefGoogle Scholar
  199. 199.
    Grymonpre DR, Sharma AK, Finney WC, Locke BR (2001) Chem Eng J 82:189–207CrossRefGoogle Scholar
  200. 200.
    Varma A, Morbidelli M, Wu H (1999) Parametric sensitivity in chemical systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  201. 201.
    Grymonpre D, Finney W, Clark R, Locke B (2003) Ind Eng Chem Res 42:5117–5134CrossRefGoogle Scholar
  202. 202.
    Sahni M (2006) Analysis of the chemical reactions in pulsed streamer discharges: An experimental study. PhD, Florida State University, TallahasseeGoogle Scholar
  203. 203.
    Sahni M, Locke BR (2006) J Haz Mat 137:1025–1034CrossRefGoogle Scholar
  204. 204.
    Sahni M, Locke BR (2006) Plasma Proc Polymers 3:342–354CrossRefGoogle Scholar
  205. 205.
    Lukes P, Clupek M, Babicky V, Sunka P, Skalny J, Stefecka M, Novak J, Malkova Z (2006) Czech J Phys 56:B916–B924CrossRefGoogle Scholar
  206. 206.
    Lukes P et al (2011) Plasma Sources Sci Technol 20:034011ADSCrossRefGoogle Scholar
  207. 207.
    Holzer F, Locke BR (2008) Plasma Chem Plasma Process 28:1–13CrossRefGoogle Scholar
  208. 208.
    Mededovic S, Locke B (2007) Appl Catal B: Environ 72:342–350CrossRefGoogle Scholar
  209. 209.
    Kirkpatrick M, Locke BR (2005) Ind Eng Chem Res 44:4243–4248CrossRefGoogle Scholar
  210. 210.
    Sato M, Ohgiyama T, Clements JS (1996) IEEE Trans Ind Appl 32:106–112CrossRefGoogle Scholar
  211. 211.
    Pimblott SM (1992) J Phys Chem 96:4485–4491CrossRefGoogle Scholar
  212. 212.
    LaVerne JA, Pimblott SM (1991) J Phys Chem 95:3196–3206CrossRefGoogle Scholar
  213. 213.
    Sahni M, Locke BR (2006) Plasma Proc Polymers 3:668–681CrossRefGoogle Scholar
  214. 214.
    Locke B, Thagard S (2009) IEEE Trans Plasma Sci 37:494–501ADSCrossRefGoogle Scholar
  215. 215.
    Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New YorkGoogle Scholar
  216. 216.
    Lovato ME, Martin CA, Cassano AE (2011) Chem Eng J 171:474–489CrossRefGoogle Scholar
  217. 217.
    Alfano OM, Irazoqui HA, Cassano AE (2009) Photochem Photobiol Sci 8:1047–1058CrossRefGoogle Scholar
  218. 218.
    Zalazar CS, Labas MD, Martin CA, Brand RJ, Cassano AE (2004) Water Sci Technol 49:13–18Google Scholar
  219. 219.
    Martin CA, Brandi RJ, Alfano OM, Cassano AE (2002) J Adv Oxid Technol 5:164–174Google Scholar
  220. 220.
    Willberg DM, Lang PS, Hochemer RH, Kratel A, Hoffmann MR (1996) Environ Sci Technol 30:2526–2534CrossRefGoogle Scholar
  221. 221.
    Willberg DM, Lang PS, Hochemer RH, Kratel A, Hoffmann MR (1996) ChemTech 26:52–57Google Scholar
  222. 222.
    Mukasa S, Maehara T, Nomura S, Toyota H, Kawashima A, Hattori Y, Hashimoto Y, Yamashita H (2010) Int J Heat Mass Transf 53:3067–3074MATHCrossRefGoogle Scholar
  223. 223.
    Wilke CR, Chang P (1955) AIChEJ 1:264–270CrossRefGoogle Scholar
  224. 224.
    Yasui K (1997) Phys Rev E 56:6750–6760ADSCrossRefGoogle Scholar
  225. 225.
    Yasui K, Tuziuti T, Sivakumar M, Iida Y (2005) J. Chem Phys 122:224706. doi:10.1063/1.1925607 ADSGoogle Scholar
  226. 226.
    Jamshidi R, Pohl B, Peuker UA, Brenner G (2012) Chem Eng J 189–190:364–375CrossRefGoogle Scholar
  227. 227.
    Fridman A, Kennedy LA (2004) Plasma physics and engineering. Taylor and Francis, New YorkGoogle Scholar
  228. 228.
    Burton M, Magee JL (1955) J Chem Phys 23:2195–2196ADSCrossRefGoogle Scholar
  229. 229.
    Burton M, Magee JL (1955) J Chem Phys 23:2194–2195ADSCrossRefGoogle Scholar
  230. 230.
    Drobyshevskii EM, Dunaev YA, Rozov SI (1973) Sov Phys Tech Phys 18:772ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biomedical Engineering, FAMU-FSU College of EngineeringFlorida State UniversityTallahasseeUSA
  2. 2.Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations