Skip to main content
Log in

DBD Plasma Treatment of Titanium in O2, N2 and Air

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Dielectric Barrier Discharge plasma treatment of a titanium metal foil in oxygen, nitrogen and air under atmospheric conditions is investigated employing X-Ray Photoelectron Spectroscopy (XPS). We investigated three different reference samples and compare the results with a large number of studies on the XPS analysis of titanium compounds containing oxygen and nitrogen. The plasma treatment in all three different process gases leads to the formation of titanium dioxide films, while rather small nitrogen fractions are found after nitrogen and air plasma treatments. This finding is explained basing on plasma chemistry insight from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Diebold U (2003) Surf Sci Rep 48:53–229

    Article  ADS  Google Scholar 

  2. Mills A, Davies HR, Worsley D (1993) Chem Soc Rev 22:417–425

    Article  Google Scholar 

  3. El-Hossary FM, Negm NZ, Khalil SM, Raaif M (2005) Appl Surf Sci 239:142–153

    Article  ADS  Google Scholar 

  4. Burns GP, Baldwin IS, Hastings MP, Wilkes JG (1989) J Appl Phys 66:2320–2324

    Article  ADS  Google Scholar 

  5. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Appl Surf Sci 257:887–898

    Article  ADS  Google Scholar 

  6. Robinson KS, Sherwood PMA (1984) Surf Interf Anal 6:261–266

    Article  Google Scholar 

  7. de Siervo A, Landers R, de Castro SGC, Kleiman GG (1998) J Electron Spectr Relat Phenom 88–91:429–433

    Article  Google Scholar 

  8. Nyholm R, Martensson N, Lebugle A, Axelsson U (1981) J Phys F Metal Phys 11:1727–1733

    Article  ADS  Google Scholar 

  9. Yarzhemsky VG, Reich T, Chernysheva LV (1992) J Electron Spectr Relat Phenom 58:67–73

    Article  Google Scholar 

  10. Scofield JH (1976) J Electron Spectrosc Relat Phenom 8:129–137

    Article  Google Scholar 

  11. Idriss H, Kim KS, Barteau MA (1992) Surf Sci 262:113–127

    Article  ADS  Google Scholar 

  12. Idriss H, Barteau MA (1994) Catal Lett 26:123–139

    Article  Google Scholar 

  13. Saha NC, Tompkins HG (1992) J Appl Phys 72:3072–3079

    Article  ADS  Google Scholar 

  14. Vesel A, Mozetic M, Kovac J, Zalar A (2006) Appl Surf Sci 253:2941–2946

    Article  ADS  Google Scholar 

  15. Sayers CN, Armstrong NR (1978) Surf Sci 77:301–320

    Article  ADS  Google Scholar 

  16. Sham TK, Lazarus MS (1979) Chem Phys Lett 68:426–432

    Article  ADS  Google Scholar 

  17. Rodriguez JA, Jirsak T, Liu G, Hrbek J, Dvorak J, Maiti A (2001) J Am Chem Soc 123:9597–9605

    Article  Google Scholar 

  18. Cheung SH, Nachimuthu P, Joly AG, Engelhard MH, Bowman MK, Chambers SA (2007) Surf Sci 601:1754–1762

    Article  ADS  Google Scholar 

  19. Chen X, Lou Y, Samia ACS, Burda C, Gole JL (2005) Adv Funct Mater 15:41–49

    Article  Google Scholar 

  20. Prokes SM, Gole JL, Chen X, Burda C, Carlos WE (2005) Adv Funct Mater 15:161–167

    Article  Google Scholar 

  21. Xu J, Ao Y, Fu D, Yuan C (2008) J Cryst Growth 310:4319–4324

    Article  ADS  Google Scholar 

  22. Fàbrega C, Andreu T, Güell T, Prades JD, Estradé S, Rebled JM, Peiró F, Morante JR (2011) Nanotechnology 22:235403

    Article  ADS  Google Scholar 

  23. Fleming GJ, Adib K, Rodriguez JA, Barteau MA, White JM, Idriss H (2008) Surf Sci 602:2029–2038

    Article  ADS  Google Scholar 

  24. Herman GS, Dohnálek Z, Ruzycki N, Diebold U (2003) J Phys Chem B 107:2788–2795

    Article  Google Scholar 

  25. Hugenschmidt MB, Gamble L, Campbell CT (1994) Surf Sci 302:329–340

    Article  ADS  Google Scholar 

  26. Perron H, Vandenborre J, Domain C, Drot T, Roques J, Simoni R, Ehrhardt JJ, Catalette H (2007) Surf Sci 601:518–527

    Article  ADS  Google Scholar 

  27. Quah EL, Wilson JN, Idriss H (2010) Langmuir 26:6411–6417

    Article  Google Scholar 

  28. Wang LQ, Baer DR, Engelhard MH, Shultz AN (1995) Surf Sci 344:237–250

    Article  ADS  Google Scholar 

  29. Bilmes SA, Mandelbaum P, Alvarez F, Victoria NM (2000) J Phys Chem B 104:9851–9858

    Article  Google Scholar 

  30. Campbell CT (1997) Surf Sci Rep 27:1–111

    Article  ADS  Google Scholar 

  31. McCafferty E, Wightman JP (1999) Appl Surf Sci 143:92–100

    Article  ADS  Google Scholar 

  32. Massaro C, Rotolo P, De Riccardis F, Milella E, Napoli A, Wieland M, Textor M, Spencor ND, Brunette DM (2002) J Mater Sci Mater Med 13:535–548

    Article  Google Scholar 

  33. Hashimoto S, Tanaka A, Murata A, Sukarada T (2004) Surf Sci 556:22–32

    Article  ADS  Google Scholar 

  34. Cova P, Poulin S, Grenier O, Masut RA (2005) J Appl Phys 97:073518

    Article  ADS  Google Scholar 

  35. Gritsenko VA, Kwok RWM, Wong H, Xu JB (2002) J Non-Cryst Solids 297:96–101

    Article  ADS  Google Scholar 

  36. Sassella A (1993) Phys Rev B 48:14208–14215

    Article  ADS  Google Scholar 

  37. Hasegawa S, He L, Inokuma T, Kurata Y (1992) Phys Rev B 46:12478–12484

    Article  ADS  Google Scholar 

  38. Yin Z, Smith FW (1990) Phys Rev B 42:3658–3665

    Article  ADS  Google Scholar 

  39. Frerichs M, Voigts F, Maus-Friedrichs W (2006) Appl Surf Sci 253:950–958

    Article  ADS  Google Scholar 

  40. Powell C, Jablonski A (2010) J Electron Spectrosc Relat Phenom 178:331–346

    Article  Google Scholar 

  41. Reilman RF, Msezane A, Manson ST (1976) J Electron Spectrosc Relat Phenom 8:389–394

    Article  Google Scholar 

  42. Jablonski A (1995) Surf Interf Anal 23:29–37

    Article  Google Scholar 

  43. National Institute of Standards and Technology Electron Inelastic-Mean-Free-Path Database 1.2. http://www.nist.gov/srd/nist71.cfm. Accessed 29 Feb 2012

  44. Hesse R, Streubel P, und Szargan R (2005) Surf Interf Anal 37:589–607

    Article  Google Scholar 

  45. Voigts F (2010) PHD thesis at the TU Clausthal

  46. Wegewitz L, Dahle S, Höfft O, Voigts F, Viöl W, Endres F, Maus-Friedrichs W (2011) J Appl Phys 110:033302

    Article  Google Scholar 

  47. Kogelschatz U (2003) Plasma Chem Plasma Phys 23:1–46

    Article  Google Scholar 

  48. Trompeter FJ (2001) PHD thesis at the RWTH Aachen

  49. Penetrante BM, Hsiao MC, Bardsley JN, Merritt BT, Vogtlin GE, Kuthi A, Burkhart CP, Bayless JR (1997) Plasma Sources Sci Technol 6:251–259

    Article  ADS  Google Scholar 

  50. Aleksandrov NL, Bazelyan EM, Kochetov IV, Dyatko NA (1997) J Phys D Appl Phys 30:1616–1624

    Article  ADS  Google Scholar 

  51. Piper LG, Caledonia GE, Kennealy JP (1981) J Chem Phys 74:2888–2895

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under project numbers MA1893/18-1 and VI359/9-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Maus-Friedrichs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahle, S., Gustus, R., Viöl, W. et al. DBD Plasma Treatment of Titanium in O2, N2 and Air. Plasma Chem Plasma Process 32, 1109–1125 (2012). https://doi.org/10.1007/s11090-012-9392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9392-x

Keywords

Navigation