Skip to main content

Advertisement

Log in

Characterization of RF Discharge in Liquid n-Hexane and its Application to Synthesize Carbon Nano-Particles

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The RF plasma discharge in liquid n-hexane is used to synthesize carbon nanoparticles. The results show that amorphous carbon nanoparticles with size of 5–25 nm are the main product in the plasma in liquid n-hexane. Carbon nano-tubes of average diameter of 19 nm and length of 500 nm are also observed. The energy efficiency for carbon nanoparticles production is 2.9 mg/kJ which is more than 10 times larger than that of typical arc discharge synthesis method. The high speed observation indicates that the RF plasma in liquid has an alternating behaviour and it does not continuously emit light. The OES results show that H and C2 are the main observed species in the plasma. Based on the OES data, it is shown that plasma temperature is 4,030 K and the electron density is 2.54 × 1022 m−3. Our results suggest that this method can be considered as a new route for carbon nanostructures production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ray SC, Saha A, Jana NR, Sarkar R (2009) J Phys Chem C 113:18546–18551

    Article  Google Scholar 

  2. Goncalves H, Jorge PAS, Fernandes JRA, Esteves da Silva JG (2010) Sens Actuators B 145:702–707

    Article  Google Scholar 

  3. Sudhakara PK, Chuang M, Annie Ho JA (2012) Talanta 88:445–449

    Article  Google Scholar 

  4. Park KH, Bae S, Lee S, Koh KH (2006) Curr Appl Phys 6:1048–1053

    Article  ADS  Google Scholar 

  5. Khaydarov RA, Khaydarov RR, Gapurova O (2010) Water Res 44:1927–1933

    Article  Google Scholar 

  6. Sun Y, Zhou B, Lin Y, Wang W, Shiral Fernando KA, Pathak PJ (2006) Am Chem Soc 128:7756–7757

    Article  Google Scholar 

  7. Wesolowski MJ, Kuzmin S, Moores B, Wales B, Karimi R, Zaidi AA, Leonenko Z, Sanderson JH, Duley WW (2011) Carbon 49:625–630

    Article  Google Scholar 

  8. Sergiienko R, Shibata E, Suwa H, Nakamura T, Akase Z, Murakami Y, Shindo D (2006) Ultrason Sonochem 13:6–12

    Article  Google Scholar 

  9. Charinpanitkul T, Soottitantawat A, Tonanon N, Tanthapanichakoon W (2009) Mater Chem Phys 116:125–128

    Article  Google Scholar 

  10. Sano N (2004) Mater Chem Phys 88:235–238

    Article  Google Scholar 

  11. Ikeda T, Kaida S, Satou T, Suda Y, Takikawa H, Tanoue H, Oke S, Ue H, Okawa T, Aoyagi N, Shimizu K (2011) Jpn J Appl Phys 50:01AF13

    Google Scholar 

  12. Imasaka K, Kanatake Y, Ohshiro Y, Suehiro J, Hara M (2006) Thin Solid Films 506–507:250–254

    Article  Google Scholar 

  13. Rahy A, Zhou C, Zheng J, Park SY, Kim MJ, Jang I, Cho SJ, Yang DJ (2012) Carbon 50:1298–1302

    Article  Google Scholar 

  14. Liu B, Huang H, Zhang F, Zhou Y, Li W, Zhang J (2012) Mater Lett 66:199–202

    Article  Google Scholar 

  15. Ishigami M, Cumings J, Zettl A, Chen S (2000) Chem Phys Lett 319:457

    Article  ADS  Google Scholar 

  16. Sano N, Wang H, Chhowalla M, Alexandrou I, Amaratunga GAJ (2001) Nature 414:506

    Article  ADS  Google Scholar 

  17. Hsin YL, Hwang KC, Chen RR, Kai JJ (2001) Adv Mater 13:830

    Article  Google Scholar 

  18. Sano N (2004) J Phys D Appl Phys 37:L17–L20

    Article  ADS  Google Scholar 

  19. Nomura S, Toyota H, Mukasa S, Yamashita H, Maehara T (2006) Appl Phys Lett 88:211503

    Article  ADS  Google Scholar 

  20. Kroushawi F, Panahpour A, Majidof MM, Latifi H (2010) Proceeding of 63rd Annual Gaseous Electronics Conference and 7th International Conference on Reactive, 55(7), October 4–8. France, Paris

    Google Scholar 

  21. Nomura S, Toyota H, Tawara M, Yamashita H, Matsumoto K (2006) Appl Phys Lett 88:231502

    Article  ADS  Google Scholar 

  22. Bruggeman P, Leys C (2009) J Phys D Appl Phys 42:053001

    Article  ADS  Google Scholar 

  23. Babaeva NY, Kushner MJ (2009) J Phys D Appl Phys 42:132003

    Article  ADS  Google Scholar 

  24. Babaeva NY, Kushner MJ (2008) IEEE Trans Plasma Sci 36:892

    Article  ADS  Google Scholar 

  25. Harilal SS, Issac RC, Bindhu CV, Nampoori VPN, Vallabhan CPG (1997) J Phys D Appl Phys 30:1703–1709

    Article  ADS  Google Scholar 

  26. Al-Shboul KF, Harilal SS, Hassanein A, Polek M (2011) J Appl Phys 109:053302

    Article  ADS  Google Scholar 

  27. Motaung DE, Moodley MK, Manikandan E, Coville NJ (2010) J Appl Phys 107:044308

    Article  ADS  Google Scholar 

  28. Dwivedi RK, Thareja RK (1995) Surf Coat Technol 73:170–176

    Article  Google Scholar 

  29. Kunze HJ (2009) Introduction to Plasma Spectroscopy. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  30. Griem HR (1964) Plasma spectroscopy. MacGrow-Hill, New York

    Google Scholar 

  31. Bystrzejewski M, Rummeli MH, Gemming T, Lange H, Huczko A (2010) New Carbon Mat 25:1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Latifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroushawi, F., Latifi, H., Hosseini, S.H. et al. Characterization of RF Discharge in Liquid n-Hexane and its Application to Synthesize Carbon Nano-Particles. Plasma Chem Plasma Process 32, 959–968 (2012). https://doi.org/10.1007/s11090-012-9391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9391-y

Keywords

Navigation