Skip to main content

Advertisement

Log in

NO Conversion by Dielectric Barrier Discharge and TiO2 Catalyst: Effect of Oxygen

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Present study was carried out to investigate the conversion of NO by simultaneous action of the dielectric barrier discharge (DBD) and TiO2 catalyst. NO conversion was recorded as a function of the input energy density by varying the percentage of NO and O2. NO conversion efficiency increased at higher content of O2. The presence of a TiO2 coating inside the reactor resulted in initially enhanced NO conversion but in few minutes the positive effect of TiO2 diminished. The increased conversion of NO in initial stage of the process was more pronounced at higher densities of input energy (higher than 100 J/l) and at lower O2 concentrations, but without O2 the TiO2 coating had no effect on the conversion of NO. The results indicate that the conversion of NO during first few minutes is related to the surface reactions with adsorbed atomic oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gundersen M, Puchkarev V, Kharlov A, Roth G, Yampolsky J, Erwin D (2001) Transient plasma-assisted diesel exhaust remediation. In: Hippler R, Pfau S, Schmidt M, Schoenbach KH (eds) Low temperature plasma physics. Wiley-VCH, Berlin

    Google Scholar 

  2. Yankelevich Y, Wolf M, Baksht R, Pokryvailo A, Vinogradov J, Rivin B, Sher E (2007) Plasma Sources Sci Technol 16:386

    Article  ADS  Google Scholar 

  3. Vinogradov IP, Wiesemann K (1997) Plasma Sources Sci Technol 6:307

    Article  ADS  Google Scholar 

  4. McLarnon CR, Penetrante BM (1998) Society of automotive engineers paper 982433

  5. Bityurin VA, Deminsky MA, Potapkin BV (2000) Chemical activity of discharges. In: Veldhuizen EM (ed) Electrical discharges for environmental purposes. Fundamentals and applications. NOVA Science Publishers, Inc., Huntington

    Google Scholar 

  6. Khacef A, Cormier JM, Pouvesle JM (2006) Eur Phys J Appl Phys 33:195

    Article  ADS  Google Scholar 

  7. Jani MA, Toda K, Takaki K, Fujiwara T (2000) J Phys D Appl Phys 33:3078

    Article  ADS  Google Scholar 

  8. Dors M, Mizeraczyk J (2004) Catal Today 89:127

    Article  Google Scholar 

  9. Kim HH, Takashima K, Katsura S, Mizuno A (2001) J Phys D Appl Phys 34:604

    Article  ADS  Google Scholar 

  10. Kim HH, Tsunoda K, Katsura S, Mizuno AA (1999) IEEE Trans Plasma Sci 35:1306

    Google Scholar 

  11. Daito S, Tochikubo F, Watanabe T (2001) Jpn J Appl Phys 40:2475

    Article  ADS  Google Scholar 

  12. Iwasaki S, Ehara Y, Kishida H, Ono S, Ito T (2004) HAKONE IX, August 23-27, 7O-03

  13. Kim H, Jun H, Sakaguchi Y, Minami W (2008) Plasma Sci Technol 10:53

    Article  ADS  Google Scholar 

  14. Guaitella O, Allegraud K, Lazzaroni C, Rousseau A (2007) 28th ICPIG, July 15–20, 06

  15. Guaitella O, Thevenet F, Puzenat E, Guillard C, Rousseau A (2008) Appl Catal B Environ 89:296

    Article  Google Scholar 

  16. Falkenstein Z, Coogan JJ (1997) J Phys D Appl Phys 30:817

    Article  ADS  Google Scholar 

  17. Penetrante BM, Hsiao MC, Merritt T, Vogtlin GE, Wallman PH (1995) IEEE Trans Plasma Sci 23:679

    Article  ADS  Google Scholar 

  18. Namihira T, Tsukamoto S, Wang D, Hori H, Katsuki S, Hackam R, Akiyama H, Shimizu M, Yokoyama K (2001) IEEE Trans Plasma Sci 29:592

    Article  ADS  Google Scholar 

  19. Fresnet F, Baravian G, Magne L, Pasquiers S, Postel C, Puech V, Rousseau A (2000) Appl Phys Lett 77:4118

    Article  ADS  Google Scholar 

  20. Stefanovic I, Bibinov NK, Deryugin AA, Vinogradov IP, Napartovich AP, Wiesmann K (2001) Plasma Sources Sci Technol 10:406

    Article  ADS  Google Scholar 

  21. Jõgi I, Bichevin V, Laan M, Haljaste A, Käämbre H, Sabre V, (2008) HAKONE XI, September 7–12, 362

  22. Dalton JS, Janes PA, Jones NG, Nicholson JA, Hallam KR, Allen GC (2002) Environ Pollution 120:415

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Estonian Science Foundation (Grant No. 6654).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Jõgi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jõgi, I., Bichevin, V., Laan, M. et al. NO Conversion by Dielectric Barrier Discharge and TiO2 Catalyst: Effect of Oxygen. Plasma Chem Plasma Process 29, 205–215 (2009). https://doi.org/10.1007/s11090-009-9171-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-009-9171-5

Keywords

Navigation