Plasma Chemistry and Plasma Processing

, Volume 28, Issue 4, pp 467–482 | Cite as

Degradation of Methylene Blue by RF Plasma in Water

  • T. MaeharaEmail author
  • I. Miyamoto
  • K. Kurokawa
  • Y. Hashimoto
  • A. Iwamae
  • M. Kuramoto
  • H. Yamashita
  • S. Mukasa
  • H. Toyota
  • S. Nomura
  • A. Kawashima
Original Paper


Radio frequency (RF) plasma in water was used for the degradation of methylene blue. The fraction of decomposition of methylene blue and the intensity of the spectral line from OH radical increased with RF power. RF plasma in water also produced hydrogen peroxide. The density of hydrogen peroxide increased with RF power and exposure time. When pure water (300 mL) is exposed to plasma at 310 W for 15 min, density of hydrogen peroxide reaches to 120 mg/L. Methylene blue after exposed to plasma degraded gradually for three weeks. This degradation may be due to chemical processes via hydrogen peroxide and tungsten. The comparison between the experimental and calculated spectral lines of OH radical (A–X) shows that the temperature of the radical is around 3,500 K. Electron density is evaluated to be ≃3.5 × 1020 m−3 from the stark broadening of the Hβ line.


Radio frequency plasma In water Degradation AOPs 



The present work was partially supported by Grants-in Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 17654118) (T. Maehara) and (No. 17560636) (H. Toyota). The authors thank Mr. H. Okumura for technical support.


  1. 1.
    Clements JS, Sato M, Davis RH (1987) IEEE Trans Ind Appl 23:224CrossRefGoogle Scholar
  2. 2.
    Sharma AK, Locke BR, Arce P, Finney WC (1993) Hazard Waste Hazard Mater 10:209Google Scholar
  3. 3.
    Joshi AA, Lock BR, Arce P, Finney WC (1995) J Hazard Matter 41:3CrossRefGoogle Scholar
  4. 4.
    Grymonpre DR, Finney WC, Locke BR (1999) Chem Eng Sci 54:3095CrossRefGoogle Scholar
  5. 5.
    Sahni M, Finnery WC, Locke BR (2005) J Adv Oxid Technol 8:105Google Scholar
  6. 6.
    Grymonpre DR, Sharma AK, Finney WC, Locke BR (2001) Chem Eng J 82:189CrossRefGoogle Scholar
  7. 7.
    Inoue M, Okada F, Sakurai A, Sakakibara M (2006) Ultrasonics Sonochem 13:313Google Scholar
  8. 8.
    Pawłat J, Ihara S, Yamabe C, Pollo I (2005) Plasma Process Polym 2:218CrossRefGoogle Scholar
  9. 9.
    Aoki H, Kitano K, Hamaguchi S (2007) Proceedings of 18th international symposium on Plasma Chemistry, Kyoto, Japan: 00339Google Scholar
  10. 10.
    Ishijima T, Hotta H, Sugai H, Sato M (2007) Appl Phys Lett 91:121501CrossRefADSGoogle Scholar
  11. 11.
    Maehara T, Toyota H, Kuramoto M et al. (2006) Jpn J Appl Phys 45:8864CrossRefADSGoogle Scholar
  12. 12.
    Nomura S, Toyota H (2003) Appl Phys Lett 83:4503CrossRefADSGoogle Scholar
  13. 13.
    Nomura S, Toyota H, Mukasa S, Yamashita H, Maehara T, Kuramoto M (2006) Appl Phys Lett 88:211503CrossRefADSGoogle Scholar
  14. 14.
    Takahashi Y, Toyota H, Nomura S, Mukasa S (2007) Proceedings of 18th international symposium on plasma chemistry, Kyoto, Japan: 00133Google Scholar
  15. 15.
    Takai O (2007) Proceedings of 18th international symposium on plasma chemistry, Kyoto, Japan: 00254Google Scholar
  16. 16.
    Levin DA, Laux CO, Kruger CH (1999) J Quant Spectrosc Radiat Transf 61:377CrossRefADSGoogle Scholar
  17. 17.
    Mašláni A, Sember V (2004) Proceedings on fourth international workshop and school towards fusion energy-plasma physics, Diagnostics, Applications Kudowa Zdroj, Poland: 669Google Scholar
  18. 18.
    Luque J, Crosley DR, (1999) “LIFBASE” Database and Spectral Simulation Program (Version 1.5), SRI International Report Mp 99-009Google Scholar
  19. 19.
    Laux O, Spence TG, Kruger CH, Zare RN (2003) Plasma Source Sci Technol 12:125CrossRefADSGoogle Scholar
  20. 20.
    Sember V, Gravelle DV, Boulos MI (2002) J Phys D: Appl Phys 35:1350CrossRefADSGoogle Scholar
  21. 21.
    Stehlé C, Hutcheon R (1999) Astron Astrophys Suppl Ser 140:93CrossRefADSGoogle Scholar
  22. 22.
    Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Spectrochimica Acta Part B 61:2CrossRefADSGoogle Scholar
  23. 23.
    Griem HR (1964) Plasma spectroscopy. MacGrow-Hill, New YorkGoogle Scholar
  24. 24.
    Chase MW Jr, Davies CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables, 3rd edn. American Chemical Society and the American institute of Physics for the National Bureau of Standards, New YorkGoogle Scholar
  25. 25.
    Seidell A, Linke WF (1965) Solubilities of inorganic and metal organic compounds, 4th edn. American Chemical Society, WashintonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • T. Maehara
    • 1
    Email author
  • I. Miyamoto
    • 1
  • K. Kurokawa
    • 1
  • Y. Hashimoto
    • 1
  • A. Iwamae
    • 2
    • 3
  • M. Kuramoto
    • 4
  • H. Yamashita
    • 1
  • S. Mukasa
    • 1
  • H. Toyota
    • 1
  • S. Nomura
    • 1
  • A. Kawashima
    • 5
  1. 1.Graduate School of Science and EngineeringEhime UniversityMatsuyamaJapan
  2. 2.Graduate School of EngineeringKyoto UniversityKyotoJapan
  3. 3.ITER Diagnostics Group, Division of ITER ProjectJapan Atomic Energy AgencyIbarakiJapan
  4. 4.Integrated Center for ScienceEhime UniversityMatsuyamaJapan
  5. 5.Faculty of AgricultureEhime UniversityMatsuyamaJapan

Personalised recommendations