Surface Treatment of Cotton Yarn by Underwater Capillary Electrical Discharge

  • Anton Yu Nikiforov
  • C. Leys
Original Article


An alternating current (50 Hz) capillary underwater discharge in aqueous solution of NaH2PO4·2H2O is used for surface treatment of cotton yarn. The capillary discharge emits of ultraviolet radiation in the wavelength range 280–340 nm (OH band). The process of bubble generation and expansion inside the capillary results in the formation of weak shock waves. The effect on cotton yarn exposed to the discharge is quantified by a liquid wicking rate test. The treatment effect strongly depends both on the distance between plasma and cotton yarn and on the voltage. The maximum effect is observed at an applied voltage of 5.8 kV and at 1.5 mm distance to the plasma zone. Analysis of the experimental data shows that the changes in cotton yarn hydrophilicity cannot be explained solely by the locally overheated water. The nonlinear dependence of the treatment effect on the applied voltage is delivered to be due to the generation of weak shock waves in the capillary discharge.


Underwater discharge Surface treatment Cotton yarn Shock waves 


  1. 1.
    Pastore ChM, Keikens P (2001). Surface characteristics of fiber and textile. Surface science series, vol 94, Marcel Dekker, New York BaselGoogle Scholar
  2. 2.
    Chan CM (1994). Polymer Surface Modification and Characterization. Hanser Gardner Publishers, MünchenGoogle Scholar
  3. 3.
    Kutepov AM, Zaharov AG, Maximov AI (2004, in Russian) Vacuumno-plasmennoe i plasmenno- rastvornoe modifizirovanie polimernih materialov. Nauka, MoscowGoogle Scholar
  4. 4.
    Temmerman E, Leys Ch (2005). J Surf Coat Tech 200(1–4):686CrossRefGoogle Scholar
  5. 5.
    Akishev Y, Grushin M, Napartovich A et al (2002). Plasma and Polymers 7(3):261CrossRefGoogle Scholar
  6. 6.
    Kogelschatz U (2003). J Plasma Chem Plasma Proc 23(1):1CrossRefGoogle Scholar
  7. 7.
    Brablec A, Slavicek P, Stahel P, Cizmar T, Trunec D (2002). Czech J Phys Suppl D 52:491Google Scholar
  8. 8.
    Mikula M, Panak J, Dvonka V (1997). Plasma Sources Sci Technol 6:179CrossRefADSGoogle Scholar
  9. 9.
    Simor M, Krump H, Hudec I, Rahel J, Brablec A, Cernak M (2004). Acta Phys Slovaca 54(1):43Google Scholar
  10. 10.
    Sun B, Sato M, Harano A, Clements JS (1998). J Electrostat 43:115CrossRefGoogle Scholar
  11. 11.
    Sunka P (2001). Phys Plasmas 8(5):2587CrossRefADSGoogle Scholar
  12. 12.
    Baerdemaeker FDe, Leys C, Simek M (2005) Proceedings of 17th ISPC, 7–12 August 2005, Toronto, CanadaGoogle Scholar
  13. 13.
    Steen ML, Butoi CI, Fisher ER (2001). Langmuir 17(26):8156CrossRefGoogle Scholar
  14. 14.
    Malik MA, Ghaffar A, Malik SA (2001). Plasma Sources Sci Technol 10:82CrossRefADSGoogle Scholar
  15. 15.
    Baerdemaeker FDe, Monte M, Leys C (2004). Czech J Phys Suppl C 54:1062CrossRefGoogle Scholar
  16. 16.
    Grymonpre DR, Finney WC, Locke BR (1999). Chem Eng Sci 54(15–16):3095CrossRefGoogle Scholar
  17. 17.
    Baerdemaeker FDe, Monte M, Leys C (2005). IEEE T plasma sci Part 1, 33(2):492CrossRefGoogle Scholar
  18. 18.
    Yang CQ, Freeman JM (1991). Appl Spectrosc 45(10):1695CrossRefADSGoogle Scholar
  19. 19.
    Sankin GN, Drozhzhin AP, Lomanovich KA, Teslenko VS (2004). Instrum Exper Tech 47(4):525CrossRefGoogle Scholar
  20. 20.
    Drobyshevskii EM, Dunaev YuA, Rozov SI (1973). Z Tekn Fiz 43(6):1217Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Applied Physics—Research Unit Plasma TechnologyGhent UniversityGentBelgium

Personalised recommendations