Skip to main content
Log in

Effect of Mn on the Growth Behavior of Pre-oxidized Film on the Heat-resistant Steel Surface

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

The phase composition of the pre-oxidized film on an alloy surface usually has a great influence on its corrosion resistance. In this work, the surface oxide film growth behavior in low-oxygen atmosphere at 720 °C of two 12Cr heat-resistant steels with different Mn content was studied, and their corrosion resistance in liquid lead–bismuth eutectic (LBE) with saturated oxygen at 600 °C was tested. The results indicated that the pre-oxidized film of 1.6Mn steel is mainly composed of large-size Mn–Cr spinel and Fe–Cr spinel, while that of improved 0Mn steel is mainly composed of continuous and dense Cr2O3 and Fe–Cr spinel. This is because Mn has a high diffusion rate in Cr2O3, so it can pass through the Cr2O3 layer and combine with O to form Mn-rich oxides, and then the Mn-rich oxides react with Cr2O3 to form Mn–Cr spinel. However, due to the high solubility of Mn in LBE, the Mn-rich pre-oxidized film of 1.6Mn steel will dissolve and fail quickly, so its long-term corrosion resistance in LBE is lower than that of 0Mn steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Z. Zhu, Q. Zhang, J. Tan, X. Wu, H. Ma, Z. Zhang, Q. Ren, E. H. Han, and X. Wang, Corrosion behavior of T91 steel in liquid lead–bismuth eutectic at 550 °C: effects of exposure time and dissolved oxygen concentration. Corrosion Science 2022. https://doi.org/10.1016/j.corsci.2022.110405.

    Article  Google Scholar 

  2. J. Xiao, X. Gong, C. Xiang, Z. Yu, H. Wang, K. Zhao, C. Liu, H. Zhuo, S. Qiu, and Y. Yin, A refined oxidation mechanism proposed for ferritic-martensitic steels exposed to oxygen-saturated liquid lead–bismuth eutectic at 400 °C for 500 h. Journal of Nuclear Materials 2021. https://doi.org/10.1016/j.jnucmat.2021.152852.

    Article  Google Scholar 

  3. M. P. Short, R. G. Ballinger, and H. E. Hänninen, Corrosion resistance of alloys F91 and Fe–12Cr–2Si in lead–bismuth eutectic up to 715 °C. Journal of Nuclear Materials 434, 2013 (259). https://doi.org/10.1016/j.jnucmat.2012.11.010.

    Article  CAS  Google Scholar 

  4. S. A. Maloy, T. Romero, M. R. James, and Y. Dai, Tensile testing of EP-823 and HT-9 after irradiation in STIP II. Journal of Nuclear Materials 356, 2006 (56). https://doi.org/10.1016/j.jnucmat.2006.05.003.

    Article  CAS  Google Scholar 

  5. K. Lambrinou, E. Charalampopoulou, T. Van Der Donck, R. Delville, and D. Schryvers, Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead–bismuth eutectic (LBE) at 500 °C. Journal of Nuclear Materials 490, 2017 (9). https://doi.org/10.1016/j.jnucmat.2017.04.004.

    Article  CAS  Google Scholar 

  6. L. Soler, F. J. Martín, F. Hernández, and D. Gómez-Briceño, Corrosion of stainless steels in lead–bismuth eutectic up to 600 °C. Journal of Nuclear Materials 335, 2004 (174). https://doi.org/10.1016/j.jnucmat.2004.07.012.

    Article  CAS  Google Scholar 

  7. Y. Kurata, M. Futakawa, and S. Saito, Corrosion behavior of steels in liquid lead–bismuth with low oxygen concentrations. Journal of Nuclear Materials 373, 2008 (164). https://doi.org/10.1016/j.jnucmat.2007.05.051.

    Article  CAS  Google Scholar 

  8. L. Zhang, W. Yan, Q. Shi, Y. Li, Y. Shan, and K. Yang, Silicon enhances high temperature oxidation resistance of SIMP steel at 700 °C. Corrosion Science 2020. https://doi.org/10.1016/j.corsci.2020.108519.

    Article  Google Scholar 

  9. J. Eklund, B. Jönsson, A. Persdotter, J. Liske, J. E. Svensson, and T. Jonsson, The influence of silicon on the corrosion properties of FeCrAl model alloys in oxidizing environments at 600 °C. Corrosion Science 144, 2018 (266). https://doi.org/10.1016/j.corsci.2018.09.004.

    Article  CAS  Google Scholar 

  10. H. Wang, H. Yu, S. Kondo, N. Okubo, and R. Kasada, Corrosion behaviour of Al-added high Mn austenitic steels in molten lead bismuth eutectic with saturated and low oxygen concentrations at 450 °C. Corrosion Science 2020. https://doi.org/10.1016/j.corsci.2020.108864.

    Article  Google Scholar 

  11. O. I. Eliseeva and V. P. Tsisar, Effect of temperature on the interaction of EP823 steel with lead melts saturated with oxygen. Materials Science 43, 2007 (230). https://doi.org/10.1007/s11003-007-0026-z.

    Article  CAS  Google Scholar 

  12. O. I. Eliseeva, V. P. Tsisar, V. M. Fedirko, and Y. S. Matychak, Changes in the phase composition of an oxide film on EP-823 steel in contact with stagnant lead melt. Materials Science 40, 2004 (260). https://doi.org/10.1007/s11003-005-0054-5.

    Article  CAS  Google Scholar 

  13. O. I. Yas’kiv, O. I. Eliseeva, A. Y. Kharkhalis, and I. S. Kukhar, Influence of preliminary oxidation on the corrosion resistance of ferritic-martensitic steels in lead melts. Materials Science 51, 2016 (854). https://doi.org/10.1007/s11003-016-9913-5.

    Article  CAS  Google Scholar 

  14. O. I. Yaskiv, I. S. Kukhar, and V. M. Fedirko, Effect of preliminary diffusion oxidation on mechanical properties of ferritic steel in oxygen-containing lead. Fusion Engineering and Design 101, 2015 (134). https://doi.org/10.1016/j.fusengdes.2015.10.006.

    Article  CAS  Google Scholar 

  15. R. Lillard, C. Valot, M. Hill, P. Dickerson, R. Hanrahan, Influence of Preoxidation on the Corrosion of Steels in Liquid Lead–Bismuth Eutectic, November 2004, Corrosion-Us, 60 (2004). https://doi.org/10.5006/1.3299217.

  16. S. Chen and L. Rong, Oxide scale formation on ultrafine-grained ferritic-martensitic steel during Pre-oxidation and its effect on the corrosion performance in stagnant liquid Pb-Bi eutectic. Acta Metall Sin 57, 2021 (989). https://doi.org/10.11900/0412.1961.2020.00451.

    Article  CAS  Google Scholar 

  17. X. Pan, Y. P. Zhang, Z. H. Dong, S. H. Chen, H. C. Jiang, and L. J. Rong, Effect of pre-oxidation treatment on the corrosion resistance in stagnant liquid Pb-Bi eutectic of 12Cr ferritic/martensitic steel. Acta Metall Sin 2022. https://doi.org/10.11900/0412.1961.2022.00267.

    Article  Google Scholar 

  18. X. Jin, S. Chen, and L. Rong, Effects of Mn on the mechanical properties and high temperature oxidation of 9Cr2WVTa steel. Journal of Nuclear Materials 494, 2017 (103). https://doi.org/10.1016/j.jnucmat.2017.07.024.

    Article  CAS  Google Scholar 

  19. B. Talic, S. Molin, P. V. Hendriksen, and H. L. Lein, Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU. Corrosion Science 138, 2018 (189). https://doi.org/10.1016/j.corsci.2018.04.016.

    Article  CAS  Google Scholar 

  20. N. J. Magdefrau, L. Chen, E. Y. Sun, and M. Aindow, Effects of alloy heat treatment on oxidation kinetics and scale morphology for Crofer 22 APU. Journal of Power Sources 241, 2013 (756). https://doi.org/10.1016/j.jpowsour.2013.03.181.

    Article  CAS  Google Scholar 

  21. F. H. Stott, F. I. Wei, and C. A. Enahoro, The influence of manganese on the High-temperature oxidation of iron-chromium alloys. Materials and Corrosion 40, 1989 (198). https://doi.org/10.1002/maco.19890400403.

    Article  CAS  Google Scholar 

  22. Y. Guo, J. Zhao, B. Xu, C. Gu, K. Feng, and Y. Wang, Effect of high-temperature oxidation on the subsurface microstructure and magnetic property of medium manganese austenitic steel. Journal of Alloys and Compound 2022. https://doi.org/10.1016/j.jallcom.2022.165254.

    Article  Google Scholar 

  23. J. Rawers, Oxidation characteristics of Fe–18Cr–18Mn-stainless steel alloys. Oxidation of Metals. 74, 2010 (167). https://doi.org/10.1007/s11085-010-9205-7.

    Article  CAS  Google Scholar 

  24. T. Liu, K. Zheng, J. Wang, Y. Lin, Z. Zheng, and J. Long, Effect of Ce on oxidation behaviour and microstructure evolution of a nickel-saving austenitic heat-resistant cast steel. Corrosion Science 166, 2020 (108423). https://doi.org/10.1016/j.corsci.2019.108423.

    Article  CAS  Google Scholar 

  25. T. D. Nguyen, J. Zhang, and D. J. Young, Effect of Mn on oxide formation by Fe–Cr and Fe–Cr–Ni alloys in dry and wet CO2 gases at 650 °C. Corrosion Science 112, 2016 (110). https://doi.org/10.1016/j.corsci.2016.07.014.

    Article  CAS  Google Scholar 

  26. A. L. Marasco and D. J. Young, The oxidation of iron-chromium-manganese alloys at 900 °C. Oxidation of Metals 36, 1991 (157). https://doi.org/10.1007/bf00938460.

    Article  CAS  Google Scholar 

  27. R. Elger and R. Pettersson, Effect of addition of 4 % Al on the high temperature oxidation and nitridation of a 20Cr–25Ni austenitic stainless steel. Oxidations of Metal 82, 2014 (469). https://doi.org/10.1007/s11085-014-9503-6.

    Article  CAS  Google Scholar 

  28. J. Wang, Y. Qiao, N. Dong, X. Fang, X. Quan, Y. Cui, and P. Han, The influence of temperature on the oxidation mechanism in air of HR3C and aluminum-containing 22Cr–25Ni austenitic stainless steels. Oxidation of Metals 89, 2018 (713). https://doi.org/10.1007/s11085-017-9817-2.

    Article  CAS  Google Scholar 

  29. K. Lambrinou, V. Koch, G. Coen, J. Van Den Bosch, and C. Schroer, Corrosion scales on various steels after exposure to liquid lead–bismuth eutectic. Journal of Nuclear Materials 450, 2014 (244). https://doi.org/10.1016/j.jnucmat.2013.09.034.

    Article  CAS  Google Scholar 

  30. J. Lim, M. Gabriele, A. Marino, K. Gladinez, and A. Aerts, Electrochemical measurement of sieverts’ constant and solubility of oxygen in LBE at 598–748 K. Journal of Electrochemcal Society 164, 2017 (II743). https://doi.org/10.1149/2.0231712jes.

    Article  CAS  Google Scholar 

  31. P. R. Deshmukh, Y. Sohn, and W. G. Shin, Electrochemical performance of facile developed aqueous asymmetric (Fe, Cr2O3//MnO2 supercapacitor. Electrochimica Acta 285, 2018 (381). https://doi.org/10.1016/j.electacta.2018.07.197.

    Article  CAS  Google Scholar 

  32. X. Cheng, Z. Jiang, D. Wei, J. Zhao, B. J. Monaghan, R. J. Longbottom, and L. Jiang, Characteristics of oxide scale formed on ferritic stainless steels in simulated reheating atmosphere. Surface and Coatings Technology 258, 2014 (257). https://doi.org/10.1016/j.surfcoat.2014.09.019.

    Article  CAS  Google Scholar 

  33. C. Liu, S. Wei, and S. Lu, Corrosion behavior of 9Cr-Si heat resistant steel deposited metal in liquid lead–bismuth eutectic at 550 °C. Corrosion Science 215, 2023 (108423). https://doi.org/10.1016/j.corsci.2023.111042.

    Article  CAS  Google Scholar 

  34. S. J. Tian, Z. Z. Jiang, and L. Luo, Oxidation behavior of T91 steel in flowing oxygen-containing lead–bismuth eutectic at 500 °C. Material and Corrosion 67, 2016 (1274). https://doi.org/10.1002/maco.201609075.

    Article  CAS  Google Scholar 

  35. H. Wang, J. Xiao, L. Chai, Z. Shen, X. Yin, K. Zhao, N. Guo, B. Yu, X. Zeng, and S. Qiu, Insights into the corrosion mechanism of a 12Cr F/M steel in oxygen-saturated liquid LBE. Corrosion Science 2023. https://doi.org/10.1016/j.corsci.2023.111602.

    Article  Google Scholar 

  36. J. Wang, S. Lu, L. Rong, D. Li, and Y. Li, Effect of silicon on the oxidation resistance of 9 wt% Cr heat resistance steels in 550 °C lead–bismuth eutectic. Corrosion Science 111, 2016 (13). https://doi.org/10.1016/j.corsci.2016.04.020.

    Article  CAS  Google Scholar 

  37. E. Epifano and D. Monceau, Ellingham diagram: a new look at an old tool. Corrosion Science 2023. https://doi.org/10.1016/j.corsci.2023.111113.

    Article  Google Scholar 

  38. Y. Wu, S. Xia, Q. Bai, W. Sun, B. Wang, Z. Zhou, and T. Liu, An in-situ study on surface coloring mechanism of a 12Cr ferrite/martensite stainless steel during vacuum heat treatment. Vacuum 215, 2023 (112270). https://doi.org/10.1016/j.vacuum.2023.112270.

    Article  CAS  Google Scholar 

  39. J. Lim, (2006) Effects of chromium and silicon on corrosion of iron alloys in lead–bismuth eutectic, massachusetts institute of technology, United States – Massachusetts. https://webofscience.clarivate.cn/wos/alldb/full-record/PQDT:61589463

  40. J. Li, X. He, B. Xu, Z. Tang, C. Fang, and G. Yang, Effect of silicon on dynamic/static corrosion resistance of T91 in lead–bismuth eutectic at 550 °C. Materials 15, 2022 (2862). https://doi.org/10.3390/ma15082862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Atkinson, R. I. Taylor, and A. E. Hughes, A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals. Philosophical Magazine A 45, 1982 (823). https://doi.org/10.1080/01418618208239905.

    Article  CAS  Google Scholar 

  42. B. Jia, W. Xu, X. Liu, L. Ji, J. Li, C. Sun, and H. Li, Element diffusion behaviors at high temperature and their effects on microstructure and tribological properties of Cr2O3 films. Applied Surface Science 613, 2023 (155993). https://doi.org/10.1016/j.apsusc.2022.155993.

    Article  CAS  Google Scholar 

  43. W. Kai, C. C. Li, F. P. Cheng, K. P. Chu, R. T. Huang, L. W. Tsay, and J. J. Kai, The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950 °C in various oxygen-containing atmospheres. Corrosion Science 108, 2016 (209). https://doi.org/10.1016/j.corsci.2016.03.020.

    Article  CAS  Google Scholar 

  44. A. C. S. Sabioni, A. M. Huntz, L. C. Borges, and F. Jomard, First study of manganese diffusion in Cr2O3 polycrystals and thin films by SIMS. Philosophical Magazine 87, 2007 (1921). https://doi.org/10.1080/14786430601120462.

    Article  CAS  Google Scholar 

  45. R. K. Wild, High temperature oxidation of austenitic stainless steel in low oxygen pressure. Corrosion Science 17, 1977 (87). https://doi.org/10.1016/0010-938x(77)90011-7.

    Article  CAS  Google Scholar 

  46. J. Wang, L. Rong, D. Li, and S. Lu, Effect of welding thermal cycles on the oxidation resistance of 9 wt% Cr heat resistant steels in 550 °C lead–bismuth eutectic. Applied Surface Science 389, 2016 (930). https://doi.org/10.1016/j.apsusc.2016.08.042.

    Article  CAS  Google Scholar 

  47. C. Zhang, J. Fu, R. Li, P. Zhang, J. Zhao, and C. Dong, Solute/impurity diffusivities in bcc Fe: a first-principles study. Jorunal of Nuclear Material 455, 2014 (354). https://doi.org/10.1016/j.jnucmat.2014.07.011.

    Article  CAS  Google Scholar 

  48. P. Jian, L. Jian, H. Bing, and G. Xie, Oxidation kinetics and phase evolution of a Fe–16Cr alloy in simulated SOFC cathode atmosphere. Journal of Power Sources. 158, 2006 (354–360). https://doi.org/10.1016/j.jpowsour.2005.09.056.

    Article  CAS  Google Scholar 

  49. G. C. Allen and M. Paul, Chemical characterization of transition metal spinel-type oxides by infrared spectroscopy. Applied Spectroscopy 49, 1995 (451). https://doi.org/10.1366/0003702953964372.

    Article  CAS  Google Scholar 

  50. H. Li and W. Chen, High temperature carburization behaviour of Mn–Cr–O spinel oxides with varied concentrations of manganese. Corrosion Science 53, 2011 (2097). https://doi.org/10.1016/j.corsci.2011.02.021.

    Article  CAS  Google Scholar 

  51. H. Li and W. Chen, Stability of MnCr2O4 spinel and Cr2O3 in high temperature carbonaceous environments with varied oxygen partial pressures. Corrosion Science 52, 2010 (2481). https://doi.org/10.1016/j.corsci.2010.02.040.

    Article  CAS  Google Scholar 

  52. Z. Yu, J. T. Lu, M. H. Chen, J. L. Wang, and F. H. Wang, Effect of pre-oxidation on hot corrosion resistance of HR3C stainless steel in sulfate salt with or without Fe2O3. Corrosion Science 192, 2021 (109789). https://doi.org/10.1016/j.corsci.2021.109789.

    Article  CAS  Google Scholar 

  53. P. Zhao, H. Zhao, J. Yu, H. Zhang, H. Gao, and Q. Chen, Crystal structure and properties of Al2O3–Cr2O3 solid solutions with different Cr2O3 contents. Ceramics International 44, 2018 (1356). https://doi.org/10.1016/j.ceramint.2017.08.195.

    Article  CAS  Google Scholar 

  54. J. Gilewicz-Wolter, J. Dudała, Z. Żurek, M. Homa, J. Lis, and M. Wolter, Diffusion of chromium, manganese, and iron in MnCr2O4 spinel. Journal of Phase Equilibria and Diffusion 26, 2005 (561). https://doi.org/10.1007/s11669-005-0051-2.

    Article  CAS  Google Scholar 

  55. P. Alnegren, (2012) Oxidation behavior of selected FeCr alloys in environments relevant for solid oxide electrolysis applications, Chalmers Research. https://hdl.handle.net/20.500.12380/171854.

  56. D. Caplan and M. Cohen, The volatilization of chromium oxide. Journal of the Electrochemical Society 108, 1961 (438). https://doi.org/10.1149/1.2428106.

    Article  CAS  Google Scholar 

  57. J. Gilewicz-Wolter, Z. Żurek, J. Dudala, J. Lis, M. Homa, and M. Wolter, Diffusion rates of51Cr,54Mn and 59Fe in MnCr2O4 and FeCr2O4 spinels, mass and charge transport in inorganic materials III. Advance Science Technology 2006. https://doi.org/10.4028/www.scientific.net/AST.46.27.

    Article  Google Scholar 

  58. A. Stenzel, D. Fähsing, M. Schütze, and M. C. Galetz, Volatilization kinetics of chromium oxide, manganese oxide, and manganese chromium spinel at high temperatures in environments containing water vapor. Material Corrosion 70, 2019 (1426). https://doi.org/10.1002/maco.201810655.

    Article  CAS  Google Scholar 

  59. M. Roy, L. Martinelli, K. Ginestar, J. Favergeon, and G. Moulin, Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead–bismuth eutectic at 520 °C. Journal Nuclear Material 468, 2016 (153). https://doi.org/10.1016/j.jnucmat.2015.11.005.

    Article  CAS  Google Scholar 

  60. I.a.E. Agency., Comparative assessment of thermophysical and thermohydraulic characteristics of lead, lead–bismuth and sodium coolants for fast reactors, [R]. Vienna: IAEA, 2002: 24.

Download references

Funding

Funding was provided by LingChuang Research Project of China National Nuclear Corporation;Innovation Foundation of IMR, CAS (No. 2022-PY13).

Author information

Authors and Affiliations

Authors

Contributions

C. wrote the main manuscript text, Z edited the manuscript, R supervised the acquisition of funds, and Y managed the project. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yangpeng Zhang or Lijian Rong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Zhang, Y., Rong, L. et al. Effect of Mn on the Growth Behavior of Pre-oxidized Film on the Heat-resistant Steel Surface. High Temperature Corrosion of mater. (2024). https://doi.org/10.1007/s11085-024-10242-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11085-024-10242-1

Keywords

Navigation