Skip to main content
Log in

Study of Isothermal Oxidation of Aluminizing and Chromizing Coating on Tungsten Electrical Contacts used in Automotive Disk Type Electromechanical Horns

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Electrical contacts are used in electromechanical horns to make and break the circuit. Electrical contacts are generally made of tungsten refractory material due to its high melting point, high hardness, and hence good abrasion and wear resistance among all refractory metals. However, the oxidation resistance of tungsten is poor, and thus tungsten contacts used in electrical appliances undergo severe high-temperature oxidation during making and breaking electric circuit. The tungsten oxide (WO3) layer, being not very conductive with respect to thickness, can cause electrical connectivity loss and subsequently cause horn failure. In other circumstances, if oxides grow thicker, they can peel off easily due to the frequent impact during make-and-break operations, leading to a high wear rate. Thus, to improve the life of horn, aluminizing and chromizing coating treatments on tungsten contact have been developed throughes halide activated pack cementation process. The behaviour of the developed coatings under isothermal oxidation at 1000 °C for different time intervals from 2 to 100 h was studied. To evaluate the rate of oxidation, the weight gain versus time of bare and coated tungsten contacts was analysed. Macroscopic morphological analysis indicates isothermal oxidation at 1000 °C resulted into severe oxidation of bare W within 10 h and aluminized W within 25 h. On the other hand, chromized W showed negligible oxidation even after 100 h at 1000 °C. The mass gain of chromized tungsten contacts after 100 h of isothermal oxidation was 2.2 mg/cm2, which was drastically lower than the aluminized (276.9 mg/cm2) and bare (270.02 mg/cm2) tungsten contacts. The parabolic oxidation rate constant (kp in units g2 cm−4 s−1) for chromized tungsten contact was obtained as 4.7 × 10−11, which is quite low compared to aluminized and bare tungsten of 6.3 × 10−7 and 1.0 × 10−6, respectively. This suggests that the chromizing coating effectively improved the oxidation resistance of tungsten contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. U. L. Businaro, Interdisciplinary Science Reviews 8, 146 (1983).

    Google Scholar 

  2. M. Yu and N. Huang, Optimization of the Signal Horn Performance, Master's Degree Thesis; ISRN: BTH-AMT-EX--2017/D16—SE (Department of Mechanical Engineering Blekinge Institute of Technology Karlskrona, Sweden, 2017).

  3. S. S. Prasad, J. Mansoori, and J. S. Park, Performance Improvement of Automotive Acoustic Signal Devices using Electric PWM Control. No. 2015-01-0235. SAE Technical Paper (2015).

  4. J. Guo, H. Ren, Z. Ma, and Y. Ma, International Journal of Multimedia and Ubiquitous Engineering 10, 301 (2015).

    Google Scholar 

  5. J. F. Guo, W. B. Ren, and G. F. Zhai, Electromechanical Components 1, 39 (2010).

    Google Scholar 

  6. V. Bhavsar and S. C. Bali, Materials Today: Proceedings 67, 566 (2022).

    CAS  Google Scholar 

  7. M. Braunovic, N. K. Myshkin, and V. V. Konchits, Electrical Contacts: Fundamentals, Applications and Technology, (CRC Press, 2017).

    Google Scholar 

  8. P. Lattari and J. Gardner. Electrical Contact Materials. Metals Handbook, 10th edn, Vol. 2 (ASM, 1990), p. 840.

  9. P. B. Joshi and P. Ramakrishnan, Materials for Electrical and Electronic Contacts: Processing, Properties, And Applications, (Science Pub Incorporated, 2004).

    Google Scholar 

  10. S. A. Humphry-Baker and W. E. Lee, Scripta Materialia 116, 67 (2016).

    CAS  Google Scholar 

  11. V. E. Ivanov, High Temperature Oxidation Protection of Tungsten, vol. 583. (National Aeronautics and Space Administration, 1969),.

    Google Scholar 

  12. G. D. Rieck, Tungsten and its Compounds (Elsevier, 1967), ISBN: 0080119751, 9780080119755.

  13. E. Lassner and W.-D. Schubert, Tungsten: Properties, Chemistry, Technology of the Elements, Alloys, and Chemical Compounds, (Springer, 1999).

    Google Scholar 

  14. K. Zangeneh-Madar, M. Amirjan, and N. Parvin, Surface and Coatings Technology 203, 2333 (2009).

    CAS  Google Scholar 

  15. L. Zhuo, Y. Zhang, Q. Chen, S. Liang, L. Chen, and J. Zou, International Journal of Refractory Metals and Hard Materials 71, 175 (2018).

    CAS  Google Scholar 

  16. S. Hwang, D. Hwang, H. Baek, and C. Shin, Metals and Materials International 27, 2369 (2021).

    CAS  Google Scholar 

  17. N. Ray, B. Kempf, T. Mützel, F. Heringhaus, L. Froyen, K. Vanmeensel, and J. Vleugels, Journal of Alloys and Compounds 670, 188 (2016).

    CAS  Google Scholar 

  18. Y. X. Zhou, Y. L. Xue, and K. Zhou, Vacuum 164, 390 (2019).

    CAS  Google Scholar 

  19. S. Sawada, Journal of the Physical Society of Japan 11, 1237 (1956).

    Google Scholar 

  20. K. K. Karuppanan, M. K. Panthalingal, and P. Biji, in Handbook of Nanomaterials for Industrial Applications (Elsevier, 2018), pp. 468–495.

  21. S.-H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, and A. C. Dillon, Advanced Materials 18, 763 (2006).

    CAS  Google Scholar 

  22. J. Lee, J. Kim, and T. Hyeon, Advanced Materials 18, 2073 (2006).

    CAS  Google Scholar 

  23. C. A. Krier, Coatings for the Protection of Refractory Metals from Oxidation, vol. 162. (Defense Metals Information Center, Battelle Memorial Institute, 1961),.

    Google Scholar 

  24. K. V. Chauhan, A. L. Sonera, D. P. Dave, and H. Panchal, International Journal of Ambient Energy 43, 2271 (2022).

    CAS  Google Scholar 

  25. S. M. Deambrosis, E. Miorin, F. Montagner, V. Zin, M. Fabrizio, M. Sebastiani, F. Massimi, and E. Bemporad, Surface and Coatings Technology 266, 14 (2015).

    CAS  Google Scholar 

  26. G. Jin, X. Bin-shi, H. Wang, Q. Li, and S. Wei, Surface and Coatings Technology 201, 6678 (2007).

    CAS  Google Scholar 

  27. A. Cuevas, K. J. Schumann, C. J. Simpson, and V. A. Ravi, Aluminizing of Stainless Steel. Paper presented at the Corrosion-2012, Salt Lake City, Utah, March (2012).

  28. A. B. Smith and A. Kempster, Utilization of Aluminide Diffusion Coatings to Improve High Temperature Performance. Paper presented at the Corrosion-2005, Houston, Texas, April (2005).

  29. V. Ravi, J. Koch, C. Kouttjie, and T. K. Nguyen, Engineered Protective Coatings for Enhanced High Temperature Performance of Stainless Steels, (Stainless Steel World America, 2010).

    Google Scholar 

  30. V. Ravi, B. Harrison, J. Koch, A. Ly, A. Schissler, B. Pint, and J. A. Haynes, Chromizing of 3-Cr Steel. Paper presented at the Corrosion 2011, Houston, Texas, March (2011).

  31. A. Sitan, Microstructural Analysis of a Chromized Stainless Steel for Fuel Cell Applications (2018).

  32. C. Zhou, H. Xu, S. Gong, and K. Y. Kim, Materials Science and Engineering: A 341, 169 (2003).

    Google Scholar 

  33. S. Awan, Pakistan Journal of Engineering and Applied Sciences 30, 86 (2022).

    Google Scholar 

  34. N. Chaia, C. M. F. A. Cossu, L. M. Ferreira, C. J. Parrisch, J. D. Cotton, G. C. Coelho, and C. A. Nunes, Corrosion Science 160, 108165 (2019).

    CAS  Google Scholar 

  35. G. W. Goward and L. W. Cannon, Journal of Engineering for Gas Turbines and Power 110, 150 (1988).

    CAS  Google Scholar 

  36. R. F. Gloria, N. Chaia, A. W. da Cruz, L. B. Alckmin, C. A. Nunes, and G. Rodrigues, Surface and Coatings Technology 411, 126999 (2021).

    CAS  Google Scholar 

  37. R. Mevrel, C. Duret, and R. Pichoir, Materials Science and Technology 2, 201 (1986).

    CAS  Google Scholar 

  38. R. Bianco, R. A. Rapp, Metallurgical and Ceramic Protective Coatings 236 (1996).

  39. R. Bianco and R. A. Rapp, Journal of the Electrochemical Society 140, 1181 (1993).

    CAS  Google Scholar 

  40. R. Sivakumar and B. L. Mordike, Surface and Coatings Technology 37, 139 (1989).

    CAS  Google Scholar 

  41. S. L. Semiatin and D. U. Furrer, Linear Thermal Expansion of Metals and Alloys, (ASM Handbook, ASM International, Materials Park, 2009), pp. 602–604.

    Google Scholar 

  42. W. Wu, Z. Chen, H. Cheng, L. Wang, and Y. Zhang, Applied Surface Science 257, 7295 (2011).

    CAS  Google Scholar 

  43. S. Bai, H. Zhang, Y. Ye, and W. Gao, Surface and Coatings Technology 258, 521 (2014).

    Google Scholar 

  44. B. R. Klotz, F. R. Kellogg, E. M. Klier, R. J. Dowding, and K. C. Cho, Characterization, Processing, and Consolidation of Nanoscale Tungsten Powder, (Army Research Lab Aberdeen Proving Ground Md Weapons and Materials Research Directorate, 2009).

    Google Scholar 

  45. A. Malizia, R. Rossi, and I. Cacciotti, Review of Scientific Instruments 89, 083306 (2018).

    CAS  Google Scholar 

  46. A. S. Abdallah, A. Fayed, G. M. Abdo, and M. Tolba Sallam, International Journal Research in Engineering and Technology 6, 69 (2017).

    Google Scholar 

  47. A. Hu and S. Cai, Journal of Materials Research and Technology 13, 311 (2021).

    CAS  Google Scholar 

  48. L. Zhu, Y.-X. Zhang, J.-F. Wang, and L.-M. Luo, Frontiers in Materials 7, 136 (2020).

    Google Scholar 

  49. C. Quan and Y. He, Surface and Coatings Technology 269, 319 (2015).

    CAS  Google Scholar 

  50. S. Telu, A. Patra, M. Sankaranarayana, R. Mitra, and S. K. Pabi, International Journal of Refractory Metals and Hard Materials 36, 191 (2013).

    CAS  Google Scholar 

  51. S. Antusch, D. E. J. Armstrong, T. B. Britton, L. Commin, J.S.K.-L. Gibson, H. Greuner, J. Hoffmann, W. Knabl, G. Pintsuk, M. Rieth, S. Roberts, and T. Weingaertner, Nuclear Materials and Energy 3, 22 (2015).

    Google Scholar 

  52. C. Bagnall, J. Capo, S. C. Cifuentes, M. A. Monge, and P. Pérez, Corrosion Science 57, 114 (2012).

    Google Scholar 

  53. W. J. Moorhead, Metallography, Microstructure, and Analysis 7, 661 (2018).

    Google Scholar 

  54. M. Ahangarkani, Materials Letters 339, 134102 (2023).

    CAS  Google Scholar 

  55. B. Guo and I. M. Kennedy, Aerosol science and technology 38, 424 (2004).

    CAS  Google Scholar 

  56. S. Mrowec and A. Stokłosa, Oxidation of Metals 8, 379 (1974).

    CAS  Google Scholar 

  57. M. Z. Alam, N. Hazari, and D. K. Das, Bulletin of Materials Science 37, 1551 (2014).

    CAS  Google Scholar 

  58. F. Sourani, M. H. Enayati, and M. Taghipour, Journal of Materials Engineering and Performance 30, 3654 (2021).

    CAS  Google Scholar 

  59. S. Zhang, M. Long, H. Zhang, S. Ai, D. Chen, P. Liu, and H. Duan, Journal of Materials Research and Technology 11, 2049 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mr. Rajiv Rathore, Mr. T. S. Srikanth, Mr. Kumar Shivam, and Mr. Neeraj Nehra for their continuous support in the completion of this research work.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

SS carried out the experiment. VB did the characterization, analysis of result and wrote the manuscript with support from SB and SB reviewed and contributed to the final version of the manuscript. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Vaibhav Bhavsar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhavsar, V., Suthar, S. & Bali, S.C. Study of Isothermal Oxidation of Aluminizing and Chromizing Coating on Tungsten Electrical Contacts used in Automotive Disk Type Electromechanical Horns. High Temperature Corrosion of mater. 100, 287–303 (2023). https://doi.org/10.1007/s11085-023-10174-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10174-2

Keywords

Navigation