Skip to main content
Log in

High-Temperature Oxidation of MCrAlY Coating Modified by Alumina Deposited by an MOCVD Process

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Spray parameters were fixed to depositing a MCrAlY coating by HVOF process on IN-708 substrate. The deposited coatings exhibited a microstructure with characteristic splats and β and γ phases. An MOCVD process was subsequently carried out to deposit a thin alumina layer on the sprayed MCrAlY coating. Cyclic oxidation tests were conducted at high temperature on the alumina/MCrAlY coating system. Both SEM and XRD analyses were used to characterize the thermally grown oxide after cyclic oxidation. A kinetic analysis was done to determinate the behaviour of the alumina/MCrAlY coating system during oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. P. Padture, Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 2016 (804–809). https://doi.org/10.1038/nmat4687.

    Article  CAS  Google Scholar 

  2. N. P. Padture, M. Gell, and E. H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science. 296, 2002 (280–284). https://doi.org/10.1126/science.1068609.

    Article  CAS  Google Scholar 

  3. D. R. Clarke, M. Oechsner, and N. P. Padture, Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 37, 2012 (891–898). https://doi.org/10.1557/mrs.2012.232.

    Article  CAS  Google Scholar 

  4. G. Y. Lai, Challenges in Materials Applications for High-Temperature Service High-Temperature. Corros. Mater. Appl. 2020. https://doi.org/10.31399/asm.tb.htcma.t52080003.

    Article  Google Scholar 

  5. D. R. Clarke and S. R. Phillpot, Thermal barrier coating materials. Mater. Today. 8, 2005 (22–29). https://doi.org/10.1016/S1369-7021(05)70934-2.

    Article  CAS  Google Scholar 

  6. C. P. Howes, An overview of thermal spray processes. Mater. Technol. 11, 1996 (188–191). https://doi.org/10.1080/10667857.1996.11752697.

    Article  Google Scholar 

  7. H.A. Katsuhisa Kitano, Satoshi Hamaguchi, (12) Patent Application Publication (10) Pub . No .: US 2010/0292345 A1 Patent Application Publication, 1 (2010) 1–5. https://patentimages.storage.googleapis.com/3b/c9/82/c283c7b24afe69/US20100019677A1.pdf.

  8. A. H. Heuer, T. Nakagawa, M. Z. Azar, D. B. Hovis, J. L. Smialek, B. Gleeson, N. D. M. Hine, H. Guhl, H. S. Lee, P. Tangney, W. M. C. Foulkes, and M. W. Finnis, On the growth of Al2O3 scales. Acta Mater. 61, 2013 (6670–6683). https://doi.org/10.1016/j.actamat.2013.07.024.

    Article  CAS  Google Scholar 

  9. H. Nickel, D. Clemens, W. J. Quadakkers, and L. Singheiser, Development of NiCrAlY alloys for corrosion-resistant coatings and thermal barrier coatings of gas turbine components. J. Press. Vessel Technol. Trans. ASME. 121, 1999 (384–387). https://doi.org/10.1115/1.2883719.

    Article  CAS  Google Scholar 

  10. W. R. Chen, Degradation of a TBC with HVOF-CoNiCrAlY bond coat. J. Therm. Spray Technol. 23, 2014 (876–884). https://doi.org/10.1007/s11666-014-0095-0.

    Article  CAS  Google Scholar 

  11. Y. F. Yang, C. Y. Jiang, Z. B. Bao, S. L. Zhu, and F. H. Wang, Effect of aluminisation characteristics on the microstructure of single phase β-(Ni, Pt)Al coating and the isothermal oxidation behaviour. Corros. Sci. 106, 2016 (43–54). https://doi.org/10.1016/j.corsci.2016.01.024.

    Article  CAS  Google Scholar 

  12. D. Texier, D. Monceau, Z. Hervier, and E. Andrieu, Effect of interdiffusion on mechanical and thermal expansion properties at high temperature of a MCrAlY coated Ni-based superalloy. Surf. Coatings Technol. 307, 2016 (81–90). https://doi.org/10.1016/j.surfcoat.2016.08.059.

    Article  CAS  Google Scholar 

  13. D. Monceau, A. Boudot-Miquet, K. Bouhanek, R. Peraldi, A. Malie, F. Crabos, and B. Pieraggi, Oxydation et protection des matériaux pour sous-couches (NiAIPd, NiAIPt, NiCoCrAlYTa, CoNiCrAIY) de barrières thermiques. J. Phys. IV JP. 2000. https://doi.org/10.1051/jp4:2000423.

    Article  Google Scholar 

  14. F S. Pettit E. J. Felton, Development, growth, and adhesion of Al2O3 on platinum-aluminum alloys. Oxid. Met. 10, 1976 (189–223).

    Article  Google Scholar 

  15. P. Richer, M. Yandouzi, L. Beauvais, and B. Jodoin, Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf. Coatings Technol. 204, 2010 (3962–3974). https://doi.org/10.1016/j.surfcoat.2010.03.043.

    Article  CAS  Google Scholar 

  16. K. Yuan, Y. Yu, and J. F. Wen, A study on the thermal cyclic behavior of thermal barrier coatings with different MCrAlY roughness. Vacuum. 137, 2017 (72–80). https://doi.org/10.1016/j.vacuum.2016.12.033.

    Article  CAS  Google Scholar 

  17. S. Istikamah, M. F. Fazira, and R. J. Talib, Atmospheric Plasma Spray of NiCrAlY Bond Coat with Different Feed Rates, Solid State. Sci. Technol. 19, 2011 (32–39).

    CAS  Google Scholar 

  18. Z. Li, S. Qian, and W. Wang, Characterization and oxidation behavior of NiCoCrAlY coating fabricated by electrophoretic deposition and vacuum heat treatment. Appl. Surf. Sci. 257, 2011 (4616–4620). https://doi.org/10.1016/j.apsusc.2010.12.097.

    Article  CAS  Google Scholar 

  19. D. Li, L. Wang, H. Peng, X. Zhao, H. Guo, and S. Gong, Cyclic oxidation behavior of β-NiAlDy alloys containing varying aluminum content at 1200 °C. Prog. Nat. Sci. Mater. Int. 22, 2012 (311–317). https://doi.org/10.1016/j.pnsc.2012.06.003.

    Article  Google Scholar 

  20. H. E. Evans, Cracking and spalling of protective oxide layers. Mater. Sci. Eng. A. 120–121, 1989 (139–146). https://doi.org/10.1016/0921-5093(89)90731-4.

    Article  Google Scholar 

  21. H. E. Evans, Stress effects in high temperature oxidation of metals. Int. Mater. Rev. 40, 1995 (1–40). https://doi.org/10.1179/imr.1995.40.1.1.

    Article  CAS  Google Scholar 

  22. H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Mechanisms of breakaway oxidation and application to a chromia-forming steel. Oxid. Met. 52, 1999 (379–402). https://doi.org/10.1023/a:1018855914737.

    Article  CAS  Google Scholar 

  23. M. S. Boldin, N. N. Berendeev, N. V. Melekhin, A. A. Popov, A. V. Nokhrin, and V. N. Chuvildeev, Review of ballistic performance of alumina: Comparison of alumina with silicon carbide and boron carbide. Ceram. Int. 47–18, 2021 (25201–25213).

    Article  Google Scholar 

  24. T. Novakoviç, T. Barudzija, M. Comorb, P. Bankoviç, and Z. Mojoviç, Electrochemical behavior of different types of alumina. J. Electroanal. Chem. 895, 2021 115542.

    Article  Google Scholar 

  25. Y. Li, Y. Xie, L. Huang, X. Liu, and X. Zheng, Effect of physical vapor deposited Al2O3film on TGO growth in YSZ/CoNiCrAlY coatings. Ceram. Int. 38, 2012 (5113–5121). https://doi.org/10.1016/j.ceramint.2012.03.014.

    Article  CAS  Google Scholar 

  26. G. H. Meng, B. Y. Zhang, H. Liu, G. J. Yang, T. Xu, C. X. Li, and C. J. Li, Highly oxidation resistant and cost effective MCrAlY bond coats prepared by controlled atmosphere heat treatment. Surf. Coatings Technol. 347, 2018 (54–65). https://doi.org/10.1016/j.surfcoat.2018.04.068.

    Article  CAS  Google Scholar 

  27. M. Daroonparvar, M. A. M. Yajid, C. M. Kay, H. Bakhsheshi-Rad, R. K. Gupta, N. M. Yusof, H. Ghandvar, A. Arshad, and I. S. M. Zulkifli, Effects of Al 2 O 3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 °C. Corros. Sci. 144, 2018 (13–34). https://doi.org/10.1016/j.corsci.2018.07.013.

    Article  CAS  Google Scholar 

  28. D. Samélor, L. Baggetto, R. Laloo, V. Turq, A. N. Gleizes, T. Duguet, D. Monceau, and C. Vahlas, Efficient, durable protection of the Ti6242S titanium alloy against high-temperature oxidation through MOCVD processed amorphous alumina coatings. J. Mater. Sci. 55, 2020 (4883–4895). https://doi.org/10.1007/s10853-019-04277-y.

    Article  CAS  Google Scholar 

  29. S. Blittersdorf, N. Bahlawane, K. Kohse-Höinghaus, B. Atakan, and J. Müller, CVD of Al2O3 thin films using aluminum tri-isopropoxide. Chem. Vap. Depos. 9, 2003 (194–198). https://doi.org/10.1002/cvde.200306248.

    Article  CAS  Google Scholar 

  30. S. Edgar, S. Javier, J. García, and J. Fernando, Chemical Vapor Deposition of Aluminum Oxide Thin Films Using a Low-cost Direct Liquid Injection Delivery System: An Educational Laboratory Experiment. World J. Chem. Educ. 4, 2016 (76–79). https://doi.org/10.12691/wjce-4-4-2.

    Article  CAS  Google Scholar 

  31. E. S. Pérez, J. S. Pérez, F. M. Piñón, J. M. J. García, O. S. Pérez, and F. J. López, Sequential microcontroller-based control for a chemical vapor deposition process. J. Appl. Res. Technol. 15, 2017 (593–598). https://doi.org/10.1016/j.jart.2017.07.003.

    Article  Google Scholar 

  32. E. Serrano, F. Juarez, An ultra-low cost line follower robot as educational tool for teaching programming and circuit’s foundations, Comput. Appl. Eng. Educ. (2018) 1-15.

  33. M. Vicente Mendoza, E. Serrano Peréz, and F. Juárez López, Alumina deposited by metal-organic chemical vapour deposition process on NiCoCrAlYTa superalloy. Mater. Lett. X. 2022. https://doi.org/10.1016/j.mlblux.2022.100160.

    Article  Google Scholar 

  34. A. G. Mora-García, H. Ruiz-Luna, M. Mosbacher, R. Popp, U. Schulz, U. Glatzel, and J. Muñoz-Saldaña, Microstructural analysis of Ta-containing NiCoCrAlY bond coats deposited by HVOF on different Ni-based superalloys. Surf. Coatings Technol. 354, 2018 (214–225). https://doi.org/10.1016/j.surfcoat.2018.09.025.

    Article  CAS  Google Scholar 

  35. D. Monceau and B. Pieraggi, Determination of parabolic rate constants from a local analysis of mass-gain curves. Oxid. Met. 50, 1998 (477–493). https://doi.org/10.1023/a:1018860909826.

    Article  CAS  Google Scholar 

  36. A. C. Karaoglanli, T. Grund, A. Turk, and T. Lampke, A comparative study of oxidation kinetics and thermal cyclic performance of thermal barrier coatings (TBCs). Surf. Coatings Technol. 2018. https://doi.org/10.1016/j.surfcoat.2018.12.082.

    Article  Google Scholar 

  37. S. Mohd Zulkifli, M. A. M. Yajid, M. H. Idris, M. Daroonparvar, and H. Hamdan, TGO Formation with NiCoCrAlYTa Bond Coat Deposition Using APS and HVOF Method. Adv. Mater. Res. 1125, 2015 (18–22). https://doi.org/10.4028/www.scientific.net/amr.1125.18.

    Article  Google Scholar 

  38. W. X. Weng, Y. M. Wang, Y. M. Liao, C. C. Li, and Q. Li, Comparison of microstructural evolution and oxidation behaviour of NiCoCrAlY and CoNiCrAlY as bond coats used for thermal barrier coatings. Surf. Coatings Technol. 352, 2018 (285–294). https://doi.org/10.1016/j.surfcoat.2018.08.024.

    Article  CAS  Google Scholar 

  39. M. Vicente Mendoza and C. de J. Morado Rueda, A. Mosqueda Sánchez, F. Juárez López, Thermal cyclic oxidation of NiCoCrAlYTa coatings manufactured by combustion flame spray. Mater. Today Commun. 25, 2020 (101617). https://doi.org/10.1016/j.mtcomm.2020.101617.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge to COFAA, EDI-IPN and SNI-CONACYT for supporting this work. The authors are also indebted to Red de Nanociencias y Nanotecnología of IPN. Also, CIVESTAV-Querétaro and Centro Nacional de Proyección térmica, CENAPROT.

Funding

The authors did not receive support from any organization for the submitted work. No funds, grants or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

V-M and J-L wrote the main manuscript text, and M-G and MS prepared each figure.

Corresponding author

Correspondence to Fernando Juárez-López.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente-Mendoza, M., Mora-García, A., Muñoz-Saldaña, J. et al. High-Temperature Oxidation of MCrAlY Coating Modified by Alumina Deposited by an MOCVD Process. High Temperature Corrosion of mater. 100, 193–207 (2023). https://doi.org/10.1007/s11085-023-10172-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10172-4

Keywords

Navigation