Skip to main content
Log in

Influence of Graphene Contents on Microstructure and High Temperature Oxidation Behavior of GNPs/Ti β21S Composites

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

GNPs/Ti β21S composites with various graphene additions were prepared by spark plasma sintering with Ti β21S powders and graphene powders as raw materials. The effects of graphene on the microstructure, phase composition and oxidation resistance at 1073 K and 1173 K were investigated. The results showed that all GNPs/Ti β21S composites possessed the porosity of not more than 0.2% and the average hardness higher than 470 HV and the oxidation resistance was influenced by the GNPs content. The GNPs/Ti β21S composites with various graphene additions oxidized at 1073 K and 1173 K were composed of TiO2, Ti, Nb2O3, Al2O3, MoO2, SiO2, and Ti2O3. At 1073 K, Ti β21S-0.8 wt.% GNPs composite exhibited the thinner oxidized layer and possessed better oxidation resistance than that of the other composites. At 1173 K, Ti β21S-0.2 wt.% GNPs composite possessed better oxidation resistance than that of the other composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. S. Zhang, J. Y. Wang, S. S. Zhu, et al., Effects of ECAP on the Formation and Tribological Properties of Thermal Oxidation Layers on a Pure Titanium Surface. Oxidation of Metals. 91, 2019 (483–494).

    Article  CAS  Google Scholar 

  2. N. Tian, L. L. Dong, H. L. Wang, et al., Microstructure and tribological properties of titanium matrix nanocomposites through powder metallurgy using graphene oxide nanosheets enhanced copper powders and spark plasma sintering. Journal of Alloys and Compounds. 867, 2021 159093.

    Article  CAS  Google Scholar 

  3. L. L. Dong, W. Zhang, Y. Q. Fu, et al., Synergetic enhancement of strength and ductility for titanium-based composites reinforced with nickel metallized multi-walled carbon nanotubes. Carbon. 184, 2021 (583–595).

    Article  CAS  Google Scholar 

  4. L. L. Dong, W. Zhang, Y. Q. Fu, et al., Reduced Graphene Oxide Nanosheets Decorated with Copper and Silver Nanoparticles for Achieving Superior Strength and Ductility in Titanium Composites. ACS Appl. Mater. Interfaces. 13, 2021 (43197–43208).

    Article  CAS  Google Scholar 

  5. Zhou Y, Dong LL, Yang QH, et al. Controlled Interfacial Reactions and Superior Mechanical Properties of High Energy Ball Milled/Spark Plasma Sintered Ti-6Al-4V-Graphene Composite. Adv. Eng. Mater. 2021;2001411.

  6. D. Banerjee and J. Williams, Perspective on Titanium science and technology. Acta Materialia. 61, 2013 (844–879).

    Article  CAS  Google Scholar 

  7. R. P. Kolli, W. J. Joost, and S. Ankem, Phase Stability and stress-induced transformations in beta titanium alloys. JOM. 67, 2015 (1273–1280).

    Article  CAS  Google Scholar 

  8. P. A. Solimine and C. J. Lissenden, Fatigue of beta titanium alloy at 20, 482 and 648 ℃. Fatigue & Fracture of Engineering Materials & Structures. 27, 2010 (943–955).

    Article  Google Scholar 

  9. J. C. Fanning and S. P. Fox, Recent developments in metastable β strip alloys. Journal of Materials Engineering & Performance. 14, 2005 (703–708).

    Article  CAS  Google Scholar 

  10. J. B. Bardel, V. Edon, T. Ait Younes, B. Lefez, et al., Influence of the CMAS on the aging of titanium alloy β21s. Surface and coatings technology. 220, 2013 (36–39).

    Article  CAS  Google Scholar 

  11. R. P. Kolli and A. Devaraj, A review of metastable beta titanium alloys. Metals. 8, 2018 (506).

    Article  Google Scholar 

  12. M. D. Hayat, H. Singh, Z. He, et al., Titanium metal matrix composites: An overview. Composites Part A: Applied Science and Manufacturing. 121, 2019 (418–438).

    Article  CAS  Google Scholar 

  13. O. Aluko, S. Gowtham, and G. M. Odegard, The development of multiscale models for predicting the mechanical response of GNP reinforced composite plate. Composite Structures. 206, 2018 (526–534).

    Article  Google Scholar 

  14. S. S. Chen, L. Brown, M. Levendorf, et al., Oxidation resistance of graphene coated Cu and Cu/Ni alloy. ACS Nano. 5, 2011 (1321–1327).

    Article  CAS  Google Scholar 

  15. J. Liu, M. Wu, Y. Yang, et al., Preparation and mechanical performance of graphene platelet reinforced titanium nanocomposites for high temperature applications. Journal of Alloys and Compounds. 765, 2018 (1111–1118).

    Article  CAS  Google Scholar 

  16. Y. Jiao, L. J. Huang, and L. Geng, Progress on discontinuously reinforced titanium matrix composites. Journal of Alloys and Compounds. 767, 2018 (1196–1215).

    Article  CAS  Google Scholar 

  17. C. Cai, S. He, L. F. Li, et al., In-situ TiB/Ti-6Al-4V composites with a tailored architecture produced by hot isostatic pressing: Microstructure evolution, enhanced tensile properties and strengthening mechanisms. Composites Part B: Engineering. 164, 2019 (546–558).

    Article  CAS  Google Scholar 

  18. Z. Cao, X. D. Wang, J. L. Li, et al., Reinforcement with graphene nanoflakes in titanium matrix composites. Journal of Alloys and Compounds. 696, 2017 (498–502).

    Article  CAS  Google Scholar 

  19. S. Tkachenko, J. Cizek, R. Mušálek, et al., Metal matrix to ceramic matrix transition via feedstock processing of SPS titanium composites alloyed with high silicone content. Journal of Alloys and Compounds. 764, 2018 (776–788).

    Article  CAS  Google Scholar 

  20. E. Ghasali, M. Soltan, A. Nezhad, et al., Preparation of Ti-based laminated composites through spark plasma sintering with different carbon sources as the bonding layer. Ceramics International. 45, 2019 (14045–14057).

    Article  CAS  Google Scholar 

  21. T. Thomas, C. Zhang, A. Sahu, et al., Effect of graphene reinforcement on the mechanical properties of Ti2AlC ceramic fabricated by spark plasma sintering. Materials Science & Engineering A. 728, 2018 (45–53).

    Article  CAS  Google Scholar 

  22. X. N. Mu, H. N. Cai, H. M. Zhang, et al., Size effect of flake Ti powders on the mechanical properties in graphene nanoflakes/Ti fabricated by flake powder metallurgy. Composites Part A. 123, 2019 (86–96).

    Article  CAS  Google Scholar 

  23. D. W. Johnson, B. P. Dobson, and K. S. Coleman, A manufacturing perspective on graphene dispersions. Current Opinion in Colloid & Interface Science. 20, 2015 (367–382).

    Article  CAS  Google Scholar 

  24. X. J. Zhang, F. Song, Z. P. Wei, et al., Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction. Materials Science & Engineering A. 705, 2017 (153–159).

    Article  CAS  Google Scholar 

  25. L. Ding, D. P. Xiang, Y. L. Pan, et al., In situ synthesis of TiC cermet by spark plasma reaction sintering. Journal of Alloys and Compounds. 661, 2016 (136–140).

    Article  CAS  Google Scholar 

  26. K. Vasanthakumar, N. S. Karthiselva, N. M. Chawake, et al., Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures. Journal of Alloys and Compounds. 709, 2017 (829–841).

    Article  CAS  Google Scholar 

  27. L. L. Dong, J. W. Lu, Y. Q. Fu, et al., Carbonaceous nanomaterial reinforced Ti-6Al-4V matrix composites: Properties, interfacial structures and strengthening mechanisms. Carbon. 164, 2020 (272–286).

    Article  CAS  Google Scholar 

  28. K. Chu, F. Wang, Y. B. Li, et al., Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene. Composites Part A. 109, 2018 (267–279).

    Article  CAS  Google Scholar 

  29. X. Mao, K. H. Oh, and J. Jang, Evolution of ultrafifine grained microstructure and nano-sized semi-coherent oxide particles in austenitic oxide dispersion strengthened steel. Materials Characterization. 117, 2016 (91–98).

    Article  CAS  Google Scholar 

  30. Kumar S, Sankara Narayanan TSN, Ganesh Sundara Raman S, et al. Thermal oxidation of CP Ti-An electrochemical and structural characterization. Materials Characterization. 2010;61:589–597.

  31. J. Liang, X. B. Liu, J. Ke, et al., Preparation and high temperature oxidation resistance of laser deposited Ti5Si3/MoSi2/Mo5Si3 reinforced α-Ti/NiTi composite coatings. Surface & Coatings Technology. 372, 2019 (56–64).

    Article  CAS  Google Scholar 

  32. S. Osswald, M. Havel, and Y. Gogotsi, Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. Journal of Raman Spectroscopy. 38, 2007 (728–736).

    Article  CAS  Google Scholar 

  33. O. Banakh, L. Snizhko, T. Journot, et al., The Influence of the Electrolyte Nature and PEO Process Parameters on Properties of Anodized Ti-15Mo Alloy Intended for Biomedical Applications. Metals. 8, 2018 (370).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Natural Science Foundation of Jiangsu Province (No. BK20181448), State Key Laboratory of Powder Metallurgy (No. 621011823), Key Research and Development Program of Shaanxi (No.2019GY-151, 2019GY-178, 2020GY-251) and Senior Talent Foundation of Jiangsu University (No. 15JDG150).

Funding

Natural Science Foundation of Jiangsu Province,BK20181448,Jinming Ru,State Key Laboratory of Powder Metallurgy,621011823,Jun Cheng,Key Research and Development Program of Shaanxi,2019GY-151,Jun Cheng,2019GY-178,Jun Cheng,2020GY-251,Jun Cheng,Senior Talent Foundation of Jiangsu University,15JDG150,Jinming Ru.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinming Ru or Jun Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ru, J., Gao, G., Cheng, J. et al. Influence of Graphene Contents on Microstructure and High Temperature Oxidation Behavior of GNPs/Ti β21S Composites. High Temperature Corrosion of mater. 99, 345–357 (2023). https://doi.org/10.1007/s11085-023-10159-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10159-1

Keywords

Navigation