Skip to main content
Log in

Evaluation of Short-Term Oxidation Mechanism of Laser Cladded Ni–Cr–C Coating on Titanium Aluminide Substrate

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

In the present investigation, a NiCr–Cr3C2 powder mixture was deposited on titanium aluminide substrate by laser cladding. The kinetics and mechanism of oxidation of the substrate and coating were studied at 800–1100 °C using XRD, SEM, ToF–SIMS and XPS characterization techniques. The results demonstrated that the Ni–Cr–C coating had improved oxidation resistance, as compared to the substrate. The oxidized surface of the coating was covered with Cr2O3 and NiCr2O4 phases at the early stages of the oxidation. The formation of NiCr2O4 could be attributed to the reaction of NiO (an oxidation product of the NiCr phase) and Cr2O3 (an oxidation product of the chromium carbide phase) during oxidation. Increasing the oxidation time at 900 °C led to the partial formation of CrO3 as a result of the oxidation of Cr2O3. It was also found that the parabolic rate constant ratio of \(\left( {K_{{\text{p}}}^{{{\text{substrate}}}} /K_{{\text{p}}}^{{{\text{coating}}}} } \right)\) increased with the temperature, which showed, comparatively, the better oxidation resistance of the coating at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K. Kothari, R. Radhakrishnan, and N. M. Wereley, Progress in Aerospace Sciences 55, 2012 (1–16).

    Article  Google Scholar 

  2. F. H. Froes, C. Suryanarayana, and D. Eliezer, Journal of Materials Science 27, 1992 (5113–5140).

    Article  CAS  Google Scholar 

  3. Y. Umakoshi, M. Yamaguchi, T. Sakagami, and T. Yamane, Journal of Materials Science 24, 1989 (1599–1603).

    Article  CAS  Google Scholar 

  4. M. Barekat, R. ShojaRazavi, and A. Ghasemi, Optics & Laser Technology 80, 2016 (145–152).

    Article  CAS  Google Scholar 

  5. Ch. Li, M. Zeng, Ch. Liu, F. Wang, Y. Guo, J. Wang, Y. Yang, W. Li, and Y. Wang, Materials Chemistry and Physics 240, 2020 (122271).

    Article  CAS  Google Scholar 

  6. J. Becker, S. Schmigalla, S. Schultze, S.-K. Rittinghaus, A. Weisheit, J. Schmelzer, and M. Kruger, Oxidation of Metals 97, 2022 (167–181).

    Article  CAS  Google Scholar 

  7. H. Wang, D. Zuo, J. Yan, M. Huang, and X. Li, Oxidation of Metals 74, 2010 (49–60).

    Article  CAS  Google Scholar 

  8. E. Toyserkani, A. Khajepour, and S. F. Corbin, Laser Cladding, (CRC Press, Boca Raton, 2004).

    Book  Google Scholar 

  9. Q. Meng, L. Geng, and D. Ni, Materials Letters 59, (22), 2005 (2774–2777).

    Article  CAS  Google Scholar 

  10. S. E. Aghili, M. H. Enayati, and F. Karimzadeh, Acta Metallurgica Sinica (English Letters) 29, 2016 (911–919).

    Article  CAS  Google Scholar 

  11. E. Qin, B. Wang, W. Li, W. Ma, H. Lu, and Sh. Wu, Journal of Thermal Spray Technology 28, 2019 (1072–1080).

    Article  CAS  Google Scholar 

  12. K. Kaur, H. Singh, and S. Prakash, Surface and Coatings Technology 206, 2011 (530–541).

    Article  CAS  Google Scholar 

  13. E. Gariboldi, L. Rovatti, N. Lecis, L. Mondora, and G. A. Mondora, Surface and Coatings Technology 305, 2016 (83–92).

    Article  CAS  Google Scholar 

  14. N. Kaur, M. Kumar, S. K. Sharma, D. Y. Kim, S. Kumar, N. M. Chavan, S. V. Joshi, N. Singh, and H. Singh, Applied Surface Science 328, 2015 (13–25).

    Article  CAS  Google Scholar 

  15. N. Bala, H. Singh, and S. Prakash, Metallurgical and Materials Transactions A 42, 2011 (3399–3416).

    Article  CAS  Google Scholar 

  16. E. Schmucker, C. Petitjean, L. Martinelli, P. J. Panteix, B. Lagha, and M. Vilasi, Corrosion Science 111, 2016 (467–473).

    Article  CAS  Google Scholar 

  17. S. Wu, B. Guo, T. Li, and D. Gu, Construction and Building Materials 81, 2015 (11–14).

    Article  Google Scholar 

  18. S. Kumar, D. Mudgal, S. Singh, and S. Prakash, Advanced Materials Letters 4, (10), 2013 (754–761).

    Article  Google Scholar 

  19. S. Matthews, B. James, and M. Hyland, Corrosion Science 51, 2009 (1172–1180).

    Article  CAS  Google Scholar 

  20. S. E. Aghili and M. Shamanian, Optics & Laser Technology 119, 2019 (105652).

    Article  CAS  Google Scholar 

  21. Y. W. Kim, Acta metallurgica et materialia 40, 1991 (1121–1133).

    Article  Google Scholar 

  22. V. Sreenivasulu and M. Manikandan, Surface and Coatings Technology 337, 2018 (250–259).

    Article  CAS  Google Scholar 

  23. G. Bolelli, L.-M. Berger, T. Börner, H. Koivuluoto, V. Matikainen, L. Lusvarghi, C. Lyphout, N. Markocsan, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Wear 358–359, 2016 (32–50).

    Article  Google Scholar 

  24. Ch. Pan, H. Wang, H. Wang, Q. Chang, and H. Wang, Journal Wuhan University of Technology, Materials Science Edition 25, 2010 (991–995).

    Article  CAS  Google Scholar 

  25. G. Calvarin, R. Molins, and A. M. Huntz, Oxidation of Metals 53, 2000 (25–48).

    Article  CAS  Google Scholar 

  26. Y. Ding, T. Hossein, and D. G. McCartney, Journal of Materials Science 50, 2015 (6808–6821).

    Article  CAS  Google Scholar 

  27. F. X. Ye, S. H. Wu, and A. Ohmori, Journal of Thermal Spray Technology 17, 2008 (942–947).

    Article  CAS  Google Scholar 

  28. D. J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed (Elsevier, New York, 2016),.

    Google Scholar 

  29. T. Takahashi, Y. Minamino, H. Hirasawa, and T. Ouchi, Materials Transactions 55, (2), 2014 (290–297).

    Article  CAS  Google Scholar 

  30. R. G. Reddy, X. Wen, and M. Divakar, Metallurgical and Materials Transactions A 32, 2000 (2357–2362).

    Article  Google Scholar 

  31. J. Małecka, Advances in Materials Science 18, (2), 2018 (5–14).

    Article  Google Scholar 

  32. P. Ouyang, G. Mi, P. Li, L. He, J. Cao, and X. Huang, Materials 12, (13), 2019 (2114).

    Article  CAS  Google Scholar 

  33. X. Wu, S. Voyshnis, A. Seyeux, Y. Chumlyakov, and Ph. Marcus, Corrosion Science 141, 2018 (175–181).

    Article  CAS  Google Scholar 

  34. S. E. Aghili, M. Shamanian, R. AminiNajafabadi, A. Keshavarzkermani, R. Esmaeilizadeh, U. Ali, E. Marzbanrad, and E. Toyserkani, Ceramics International 46, 2020 (1668–1679).

    Article  CAS  Google Scholar 

  35. P. Berthod, Oxidation of Metals 64, (3–4), 2005 (235–252).

    Article  CAS  Google Scholar 

  36. S. C. Tsai, A. M. Huntz, and C. Dolin, Materials Science and Engineering A 212, 1996 (6–13).

    Article  Google Scholar 

  37. K. P. Lillerud and P. Kofstad, Journal of the Electrochemical Society 127, 1980 (2397–2410).

    Article  CAS  Google Scholar 

  38. P. Kofstad and K. P. Lillerud, Journal of the Electrochemical Society 127, 1980 (2410–2419).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Biointerfaces Institute at McMaster University for conducting the XPS measurements. The authors also gratefully thank WATLAB, at the University of Waterloo, for conducting the SIMS experiments. In addition, we appreciate the members of Multi-Scale Additive Manufacturing (MSAM) group, especially Prof. Mihaela Vlasea, Dr. Ali Keshavarzkermani and Dr. Reza Esmaeilizadeh, for all their supports.

Funding

No funding was received to assist with the preparation of this paper.

Author information

Authors and Affiliations

Authors

Contributions

SEA was contributed to conceptualization, data curation, investigation, methodology, formal analysis, writing—original draft. MS was contributed to conceptualization, methodology, formal analysis, writing—review and editing, supervision. RAN was contributed to investigation, writing—review and editing. HA was contributed to investigation, writing—review and editing. EM was contributed to formal analysis, investigation, writing—review and editing. YM was contributed to writing—review and editing. ET was contributed to conceptualization, methodology, formal analysis, writing—review and editing, supervision.

Corresponding author

Correspondence to S. E. Aghili.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghili, S.E., Shamanian, M., Amini Najafabadi, R. et al. Evaluation of Short-Term Oxidation Mechanism of Laser Cladded Ni–Cr–C Coating on Titanium Aluminide Substrate. High Temperature Corrosion of mater. 99, 311–329 (2023). https://doi.org/10.1007/s11085-023-10154-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10154-6

Keywords

Navigation