Skip to main content
Log in

High-Temperature Oxidation Behavior of Tool Steel with Increased Thermal Conductivity

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The high-temperature oxidation behavior of tool steel with increased thermal conductivity was studied in two conditions, the soft annealed condition, and the quenched and tempered condition. First, calculations of the composition of the oxide layers formed were predicted using the CALPHAD method. Then, one group of samples was oxidized in a chamber furnace and another group was oxidized in an instrument for simultaneous thermal analysis (STA) for 100 h in the temperature range between 400 and 700 °C. The first samples were used for microscopic analysis of the oxide layers, and the second for the study of oxidation kinetics. Equations describing the high-temperature oxidation kinetics were derived. The kinetics can be described by three mathematical functions: exponential, parabolic and cubic, depending on the oxidation temperature and the heat treatment of the steel. It has been shown that quenched and tempered samples oxidize less (thinner oxide layer), resulting in a slower oxidation rate. The oxide layers formed consisted of three sublayers, the inner one is a magnetite (Fe, Mo, Ni)3O4, the middle one is a mixture of magnetite and hematite, and the outer one is hematite. At 600 and 700 °C, wüstite is also present in the middle and inner oxide sublayers. The higher temperatures resulted in thicker oxide layers. A difference in the oxidation of the steel matrix and carbides was observed, as some carbides remained in the oxide layer. Internal oxidation was also observed at 600 and 700 °C.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. G. Roberts, G. Krauss, and R. Kennedy, Tool Steels, 5th ed (ASM International, Materials Park, 1998),.

    Book  Google Scholar 

  2. R. A. Mesquita, Tool steels: properties and performance, (CRC Press, Boca Raton, FL, 2016).

    Book  Google Scholar 

  3. J. Szumera, The tool steel guide, (Industrial Press, New York, 2003).

    Google Scholar 

  4. G. Krauss, Steels: processing, structure, and performance, (ASM International, Materials Park, 2015).

    Book  Google Scholar 

  5. Z. Taha, A. R. Yusoff, M. F. Mohamd Sharif, M. A. H. Saharudin, and M. F. Zamri, Comparison of cooling performance between high thermal conductivity steel (HTCS 150) and hot work tool steel (SKD 61) insert for experimental tool using finite element analysis. Advanced on Materials and Research 903, 2014 (163–168).

    Article  Google Scholar 

  6. M. Ayabe, T. Nagaoka, K. Shibata, et al., Effect of high thermal conductivity die steel in aluminum casting. International Journal of Metallic 2, 2008 (47–55).

    CAS  Google Scholar 

  7. S. Li, X. Wu, X. Li, and X. He, High temperature performance of a Mo-W type hotwork die steel of high thermal conductivity. Chinese Journal of Material and Research 31, 2017 (32–40).

    CAS  Google Scholar 

  8. E. Kaschnitz, P. Hofer, and W. Funk, Thermophysical properties of a hot-work tool-steel with high thermal conductivity. International Journal of Thermophysics 34, 2013 (843–850).

    Article  CAS  Google Scholar 

  9. I. Valls, A. Hamasaiid, and A. Padré, High thermal conductivity and high wear resistance tool steels for cost-effective hot stamping tools. Journal of Physics Conference on Series 2017, 2017 (896).

    Google Scholar 

  10. Q. Zhou, X. Wu, N. Shi, J. Li, and N. Min, Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering. Materials Science on Engineering A 528, 2011 (5696–5700).

    Article  CAS  Google Scholar 

  11. A. Medvedeva, J. Bergström, S. Gunnarsson, and J. Andersson, High-temperature properties and microstructural stability of hot-work tool steels. Materials on Science and Engineering A 523, 2009 (39–46).

    Article  CAS  Google Scholar 

  12. Z. Zhang, D. Delagnes, and G. Bernhart, Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurements. Materials on Science and Engineering A. 380, 2004 (222–230).

    Article  CAS  Google Scholar 

  13. N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas, and C. Levaillant, Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel. Materials on Science and Engineering A. 387–389, 2004 (171–175).

    Article  CAS  Google Scholar 

  14. A. Jilg and T. Seifert, Temperature dependent cyclic mechanical properties of a hot work steel after time and temperature dependent softening. Materials on Science and Engineering A. 721, 2018 (96–102).

    Article  CAS  Google Scholar 

  15. D. Caliskanoglu, I. Siller, R. Ebner, H. Leitner, F. Jeglitsch, W. Waldhauser. Thermal fatigue and softening behavior of hot work tool steels. Proceedings of the 6th International Tools and Conference, 707–719, 2002

  16. R. Markežič, N. Mole, I. Naglič, and R. Šturm, Time and temperature dependent softening of H11 hot-work tool steel and definition of an anisothermal tempering kinetic model. Materials on Today Communication 2020, 2020 (22).

    Google Scholar 

  17. G. Y. Lai, High-temperature corrosion and materials applications, (ASM International, Materials Park, 2007).

    Book  Google Scholar 

  18. R. W. Revie, Uhlig’s corrosion handbook, (Wiley, Hoboken, NJ, 2011).

    Book  Google Scholar 

  19. T. J. A. Richardson, B. Cottis, R. Lindsay, et al., Shreir’s Corrosion, vol. 1. (Elsevier Science, Amsterdam, London, 2009),.

    Google Scholar 

  20. D. J. Young, High temperature oxidation and corrosion of metals, (Elsevier, Amsterdam, Boston, London, 2016).

    Google Scholar 

  21. B. N. Popov, Corrosion engineering: principles and solved problems. Corrosion engineering: principles and solved problems, (Elsevier, Amsterdam, London, 2015).

    Google Scholar 

  22. P. Pedeferri, Corrosion science and engineering, (Springer, Cham, 2018).

    Book  Google Scholar 

  23. Cramer SD, Covino BS. ASM handbook volume 13B: corrosion: materials. Materials Park: ASM International; 2005.

  24. K. Hauffe, Oxidation of metals, (Springer, New York, 1965).

    Google Scholar 

  25. R. Y. Chen and W. Y. D. Yeun, Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxidation on Metal 59, 2003 (433–468).

    Article  CAS  Google Scholar 

  26. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the high temperature oxidation of metals, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  27. M. H. Davies, M. T. Simnad, and C. E. Birchenall, On the mechanism and kinetics of the scaling of iron. JOM. 3, 1951 (889–896).

    Article  CAS  Google Scholar 

  28. N. B. Pilling and R. E. Bedworth, Oxidation of metals at high temperatures. Journal of Institutional Metallic 29, 1923 (529–539).

    Google Scholar 

  29. W. E. Boggs and R. H. Kachik, The oxidation of iron-carbon alloys at 500 °C. Journal of Electrochemical Society 116, 1969 (424–430).

    Article  CAS  Google Scholar 

  30. D. Caplan and M. Cohen, Effect of cold work on the oxidation of iron from 400–650 °C. Corrosions on Science 6, 1966 (327–335).

    Google Scholar 

  31. D. Caplan, G. I. Sproule, and R. J. Hussey, Comparison of the kinetics ofhigh-temperature oxidation of Fe as influenced by metal purity and cold work. Corrosions on Science 10, 1970 (9–17).

    Article  CAS  Google Scholar 

  32. S. Ghosh, M. K. Kumar, and V. Kain, High temperature oxidation behavior of AISI 304L stainless steel: effect of surface working operations. Applied Surface on Science 264, 2013 (312–319).

    Article  CAS  Google Scholar 

  33. H. Abuluwefa, R. I. L. Guthrie, and F. Ajersch, The effect of oxygen concentration on the oxidation of low-carbon steel in the temperature range 1000 to 1250 °C. Oxidation on Metallic 46, 1996 (423–440).

    Article  CAS  Google Scholar 

  34. D. Li, Q. Dai, X. Cheng, R. Wang, and Y. Huang, High-temperature oxidation resistance of austenitic stainless steel Cr18Ni11Cu3Al3MnNb. Journal of Ironic Steel Research on International 19, 2012 (74–78).

    Article  CAS  Google Scholar 

  35. R. Y. Chen and W. Y. Yuen, Oxidation of low-carbon, low-silicon mild steel at 450–900 °C under conditions relevant to hot-strip processing. Oxidation on Metallic 57, 2002 (53–79).

    Article  CAS  Google Scholar 

  36. M. Hao, B. Sun, and H. Wang, High-temperature oxidation behavior of Fe–1Cr–0.2Si steel. Materials (Basel) 13, 2020 (1–18).

    Google Scholar 

  37. D. Caplan, G. I. Sproule, R. J. Hussey, and M. J. Graham, Oxidation of Fe-C alloys at 500 °C. Oxidation on Metallics 12, 1978 (67–82).

    Article  CAS  Google Scholar 

  38. D. Caplan, G. I. Sproule, R. J. Hussey, and M. J. Graham, Oxidation of Fe-C alloys at 700 °C. Oxidation on Metallics 13, 1979 (255–272).

    Article  CAS  Google Scholar 

  39. S.-H. Bak, M.-J. Kim, J.-H. Lee, S.-J. Bong, S.-K. Kim, and D.-B. Lee, High-temperature oxidation kinetics and scales formed on Fe–2.3%Cr–1.6%W alloy. Journal of Korean Ceramic Society 48, 2011 (57–62).

    Article  CAS  Google Scholar 

  40. G. Cao, X. Liu, B. Sun, and Z. Liu, Morphology of oxide scale and oxidation kinetics of low carbon steel. Journal of the Iron Steel Research on International 21, 2014 (335–341).

    Article  CAS  Google Scholar 

  41. A. U. Malik and D. P. Whittle, Oxidation of Fe-C alloys in the temperature range 600–850 °C. Oxidation on Metallic 16, 1981 (339–353).

    Article  CAS  Google Scholar 

  42. M. H. S. Bidabadi, S. Chandra-ambhorn, A. Rehman, et al., Carbon depositions within the oxide scale and its effect on the oxidation behavior of low alloy steel in low (0.1 MPa), sub-(5 MPa) and supercritical (10 MPa) CO2 at 550 °C. Corrosions on Science 177, 2020 (108950).

    Article  CAS  Google Scholar 

  43. Y. Min, X. Wu, K. Wang, L. Li, and L. Xu, Prediction and analysis on oxidation of H13 hot work steel. Journal of the Iron Steel Research on International 13, 2006 (44–49).

    Article  CAS  Google Scholar 

  44. X. Zhang, X. Jie, L. Zhang, S. Lui, and Q. Zheng, Improving the high-temperature oxidation resistance of H13 steel by laser cladding with a WC/Co–Cr alloy coating. Anti-Corrosion Methods Materials 63, 2016 (171–176).

    Article  CAS  Google Scholar 

  45. S. R. J. Saunders, M. Monteiro, and F. Rizzo, The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review. Progessive on Materials Science 53, 2008 (775–837).

    Article  CAS  Google Scholar 

  46. J. Zurek, E. Wessel, L. Niewolak, et al., Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650 °C. Corrosions on Science 46, 2004 (2301–2317).

    Article  CAS  Google Scholar 

  47. T. Balaško, M. Vončina, J. Burja, B. Š Batič, and J. Medved, High-temperature oxidation behaviour of aisi h11 tool steel. Metals (Basel) 2021, 2021 (11).

    Google Scholar 

  48. P. Kofstad, Oxidation of metals: determination of activation energies. Nature 179, 1957 (1362–1363).

    Article  CAS  Google Scholar 

  49. Thermo-Calc Software. TCOX9: TCS metal oxide solutions database, vol. 7, 1992.

  50. F. Qayyum, M. Shah, S. Manzoor, and M. Abbas, Comparison of thermomechanical stresses produced in work rolls during hot and cold rolling of cartridge brass 1101. Materials on Science Technology 31, 2015 (317–324).

    Article  CAS  Google Scholar 

  51. E. Kaschnitz, P. Hofer-Hauser, and W. Funk, Electrical resistivity measured by millisecond pulse-heating in comparison to thermal conductivity of the hot work tool steel AISI H11 (1.2343) at elevated temperature. High Temperature on High Press 49, 2020 (75–87).

    Article  Google Scholar 

  52. J. I. Arrizubieta, M. Cortina, A. Mendioroz, A. Salazar, and A. Lamikiz, Thermal diffusivity measurement of laser-deposited AISI H13 tool steel and impact on cooling performance of hot stamping tools. Metals (Basel) 2020, 2020 (10).

    Google Scholar 

  53. H. J. Grabke, M. Spiegel, and A. Zahs, Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys. Materials on Research 7, 2004 (89–95).

    Article  CAS  Google Scholar 

  54. L. B. Susanto and D. J. Young, Effect of carbide volume fraction on the oxidation of austenitic Fe–Cr–C alloys. Materials on Corrosion 57, 2006 (467–475).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Slovenian Research Agency ARRS program P2-0344 (B) and P2-0050 (C).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tilen Balaško; Methodology, formal analysis, and investigation: Tilen Balaško, Jaka Burja and Barbara Šetina Batič; Writing—original draft preparation: Tilen Balaško and Jaka Burja; Writing—review, editing and supervision: Maja Vončina and Jožef Medved.

Corresponding author

Correspondence to Tilen Balaško.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaško, T., Vončina, M., Burja, J. et al. High-Temperature Oxidation Behavior of Tool Steel with Increased Thermal Conductivity. Oxid Met 98, 135–161 (2022). https://doi.org/10.1007/s11085-022-10119-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-022-10119-1

Keywords

Navigation