Skip to main content
Log in

The Effect of Niobium and Carbon on the Oxidation Resistance of Alloys Based on Fe3Al at 900°C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The cyclic oxidation behaviour of Fe-26Al-3Nb, Fe-27Al-5Nb and Fe-26Al-5Nb-1.4C (in at%) was investigated at 900°C. Chemical and phase analyses of the scale and oxide protrusions were conducted using light optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The oxidation resistance of the tested alloys was determined using fractal dimension, and the results were compared with Fe-26Al-0.3Zr, Fe-26Al-1Zr (at%) and EN X5CrNi18-10 steel.

The oxidation kinetics of Fe-26Al-3Nb and Fe-27Al-5Nb follow the parabolic rate law. Oxidation ingress into the alloys was observed due to the preferential oxidation of niobium-rich precipitates. Therefore, the oxidation rate of tested alloys increased with increasing amounts of particles of Laves phase (Fe, Al)2Nb and NbC. The niobium carbides oxidised more readily than the particles of Laves phase (Fe, Al)2Nb. The cyclic oxidation of Fe-Al-Nb and Fe-Al-Nb-C alloys at 900°C led to the formation of oxide scales composed of Al2O3, Fe2O3 and AlNbO4 (or non-stoichiometric AlNbO4).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. C. G. McKamey, J. H. Devan, P. F. Tortorelli, and V. K. Sikka, J. Mater. Res. 6, 1991 (1779–1805). https://doi.org/10.1557/JMR.1991.1779.

    Article  CAS  Google Scholar 

  2. P. F. Tortorelli and K. Natesan, Mater. Sci. Eng. A 258, 1998 (115–125). https://doi.org/10.1016/S0921-5093(98)00924-1.

    Article  Google Scholar 

  3. P. F. Tortorelli and J. H. Devan, Mater. Sci. Eng. A 153, 1992 (573–577). https://doi.org/10.1016/0921-5093(92)90253-W.

    Article  Google Scholar 

  4. M. Palm, Intermetallics 13, 2005 (1286–1295). https://doi.org/10.1016/j.intermet.2004.10.015.

    Article  CAS  Google Scholar 

  5. M. Palm, A. Schneider, F. Stein, and G. Sauthoff, MRS Online Proceedings Library 842, 2004 (83–94). https://doi.org/10.1557/PROC-842-S1.7.

    Article  Google Scholar 

  6. P. Kratochvíl, M. Švec, R. Král, J. Veselý, P. Lukáč, and T. Vlasák, Metall. Mater. Trans. A. 49, 2018 (1598–1603). https://doi.org/10.1007/s11661-018-4524-4.

    Article  CAS  Google Scholar 

  7. M. Švec and V. Vodičková, Manuf Technol 14, (3), 2014 (456–461). https://doi.org/10.21062/ujep/x.2014/a/1213-2489/MT/14/3/456.

    Article  Google Scholar 

  8. M. Švec, V. Vodičková, P. Hanus, V. Keller, The effect of heat treatment on the structure and high – temperature strength of Fe3Al – based iron aluminide doped by carbon and carbide-forming element, Iop Conference Series: Materials Science and Engineering. 723 (2020). https://doi.org/10.1088/1757-899X/723/1/012030

  9. P. Kejzlar, P. Kratochvil, R. Král, and V. Vodičkova, Metall Mater Trans A 45, 2014 (335–342). https://doi.org/10.1007/s11661-013-1987-1.

    Article  CAS  Google Scholar 

  10. P. Kratochvil, P. Kejzlar, R. Král, and V. Vodičkova, Intermetallics 20, 2012 (39–46). https://doi.org/10.1016/j.intermet.2011.08.007.

    Article  CAS  Google Scholar 

  11. D. Janda, H. Fietzek, M. Galetz, and M. Heilmaier, Intermetallics 41, 2013 (51–57). https://doi.org/10.1016/j.intermet.2013.04.016.

    Article  CAS  Google Scholar 

  12. A. Hotař, M. Palm, P. Kratochvil, V. Vodičkova, and S. Daniš, Corros. Sci 63, 2012 (71–81). https://doi.org/10.1016/j.corsci.2012.05.027.

    Article  CAS  Google Scholar 

  13. A. Hotař, P. Kejzlar, M. Palm, and J. Mlnařík, Corros. Sci 100, 2015 (147–157). https://doi.org/10.1016/j.corsci.2015.07.016.

    Article  CAS  Google Scholar 

  14. A. Hotař and M. Palm, Intermetallics 18, 2010 (1390–1395). https://doi.org/10.1016/j.intermet.2010.02.014.

    Article  CAS  Google Scholar 

  15. C. G. McKamey, P. J. Maziasz, and J. W. Jones, J. Mater. Res. 7, 1992 (2089–2106). https://doi.org/10.1557/JMR.1992.2089.

    Article  CAS  Google Scholar 

  16. D. G. Morris, M. A. Muñoz-Morris, L. M. Requejo, and C. Baudin, Intermetallics 14, 2006 (1204–1207). https://doi.org/10.1016/j.intermet.2005.10.015.

    Article  CAS  Google Scholar 

  17. F. Dobeš, P. Dymáček, and M. Friák, Metals 9, 2019 (739). https://doi.org/10.3390/met9070739.

    Article  CAS  Google Scholar 

  18. S. Milenkovic and M. Palm, Intermetallics. 16, 2008 (1212–1218). https://doi.org/10.1016/j.intermet.2008.07.007.

    Article  CAS  Google Scholar 

  19. N. Jiansen, W. Xiaojing, W. Qing, C. Xiaoying, L. Weimin, and Z. Xingyao, Journal of Shanghai University (English Edition). 1, 1997 (79–82). https://doi.org/10.1007/s11741-997-0049-6.

    Article  Google Scholar 

  20. B. A. Pint, P. F. Tortorelli, and I. G. Wright, Corros. Mater. 47, 1996 (663–674). https://doi.org/10.1002/maco.19960471202.

    Article  CAS  Google Scholar 

  21. B. A. Pint, P. F. Tortorelli, and I. G. Wright, Mater. High Temp. 16, 1999 (1–13). https://doi.org/10.1179/mht.1999.001.

    Article  CAS  Google Scholar 

  22. B. A. Pint, K. L. More, P. F. Tortorelli, W. D. Porter, and I. G. Wright, Mater. Sci. Forum 369–372, 2001 (411–418). https://doi.org/10.4028/www.scientific.net/MSF.369-372.411.

    Article  Google Scholar 

  23. B. A. Pint, Mater. Sci. Forum 251–4, 1997 (397–404). https://doi.org/10.4028/www.scientific.net/MSF.251-254.397.

    Article  Google Scholar 

  24. B. A. Pint and K. B. Alexander, J. Electrochem. Soc. 145, 1998 (1819–1829). https://doi.org/10.1149/1.1838563.

    Article  CAS  Google Scholar 

  25. V. Hotař and A. Hotař, Corros. Sci. 133, 2018 (141–149). https://doi.org/10.1016/j.corsci.2018.01.017.

    Article  CAS  Google Scholar 

  26. A. Hotař and V. Hotař, Manuf Technol 15, 2015 (534–541).

    Google Scholar 

  27. B. B. Mandelbrot, The Fractal Geometry of Nature, 2nd ed (Freeman WH and Co., New York, 1982),.

    Google Scholar 

  28. C. J. G. Evertsz, H. O. Peitgen, and R. F. Voss, Fractal Geometry and Analysis, (World Scientific Publishing Co.Pte. Ltd., Singapore, 1996).

    Google Scholar 

  29. V. J. Levy, E. Lutton, and C. Tricot, Fractals in Engineering, (Springer-Verlag, New York, 1997).

    Book  Google Scholar 

  30. A. Hotař, P. Kratochvíl, and V. Hotař, Kovove Mater. 47, 2009 (247–252).

    Google Scholar 

  31. A. Hotař, V. Hotař, and F. Novotný, Kovove Mater 52, 2014 (149–155).

    Article  Google Scholar 

  32. V. Hotař, F. Novotný, Surface profile evaluation by fractal dimension and statistic tools, Proc. 11th International Conference on Fracture, CCI Centro Congressi Internazionale s.r.l. Turin, 2005, p. 588.

  33. V. Hotař and F. Novotný, Glass Sci. Technol. 77, 2004 (230–237).

    Google Scholar 

  34. V. Hotař, Comput. Math. Appl. 66, 2013 (113–121). https://doi.org/10.1016/j.camwa.2013.01.015.

    Article  Google Scholar 

  35. J. J. Park and S. I. Pyun, Corrros. Sci. 45, 2003 (995–1010). https://doi.org/10.1016/S0010-938X(02)00212-3.

    Article  CAS  Google Scholar 

  36. F. F. Feliciano, F. R. Leta, and F. B. Mainier, Corros. Sci. 93, 2015 (138–147). https://doi.org/10.1016/j.corsci.2015.01.017.

    Article  CAS  Google Scholar 

  37. Ch. Liang and W. Zhang, J. Wuhan Univ. Technol. 22, 2007 (389–393). https://doi.org/10.1007/s11595-006-3389-3.

    Article  CAS  Google Scholar 

  38. N. Lin, J. Guo, F. Xie, J. Zou, W. Tian, X. Yao, H. Zhang, and B. Tang, Appl. Surf. Sci. 311, 2014 (330–338). https://doi.org/10.1016/j.apsusc.2014.05.062.

    Article  CAS  Google Scholar 

  39. R. M. Pidaparti, B. S. Aghazadeh, A. Whitfield, A. S. Rao, and G. P. Mercier, Corrsion. Sci. 52, 2010 (3661–3666). https://doi.org/10.1016/j.corsci.2010.07.017.

    Article  CAS  Google Scholar 

  40. F. Jin and F. P. Chiang, Res. Nondestruct. Eval. 7, 1996 (229–238). https://doi.org/10.1007/BF01606390.

    Article  Google Scholar 

  41. J. M. Costa, F. Sagués, and M. Vilarrasa, Corrros. Sci. 32, 1991 (665–668). https://doi.org/10.1016/0010-938X(91)90114-5.

    Article  CAS  Google Scholar 

  42. ISO 4287, Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters, International Organization for Standardization, Geneva 1997.

  43. J. Ma, N. Wen, R. Wang, J. Wang, X. Zhang, J. Li, and Y. Chen, Coatings 11, 2021 (880). https://doi.org/10.3390/coatings11080880.

    Article  CAS  Google Scholar 

  44. P. Kratochvil, F. Dobeš, J. Pešička, P. Málek, R. Král, J. Buršík, V. Vodičkova, and P. Hanus, Mater. Sci. Eng. A 548, 2012 (175–182). https://doi.org/10.1016/j.msea.2012.03.103.

    Article  CAS  Google Scholar 

  45. J. M. Xiang, G. B. Mi, S. J. Qu, X. Huang, Z. Chen, A. H. Feng, J. Shen, and D. L. Chen, Sci Rep 8, 2018 (12761). https://doi.org/10.1038/s41598-018-31196-w.

    Article  CAS  Google Scholar 

  46. M. Dadé, V. A. Esin, L. Nazé, and P. Sallot, Corros. Sci. 148, 2019 (379–387). https://doi.org/10.1016/j.corsci.2018.11.036.

    Article  CAS  Google Scholar 

  47. H. Jiang, M. Hirohasi, Y. Lu, and H. Imanari, Scr. Mater. 46, 2002 (639–643). https://doi.org/10.1016/S1359-6462(02)00042-8.

    Article  CAS  Google Scholar 

  48. C. Leyens and H. Gedanitz, Scr. Mater. 41, 1999 (901–906). https://doi.org/10.1016/S1359-6462(99)00234-1.

    Article  CAS  Google Scholar 

  49. A. Ralison, F. Dettenwanger, and M. Schütze, Mater High Temp. 20, 2014 (607–629). https://doi.org/10.1179/mht.2003.070.

    Article  Google Scholar 

  50. J. K. Hong, N. K. Park, S. J. Kim, Ch. Y. Kang, Microstructures of Oxidized Primary Carbides on Superalloy Inconel 718, Materials Science Forum, vol. 502, Trans Tech Publications, Ltd. (2005), 249–256. https://doi.org/10.4028/www.scientific.net/msf.502.249

  51. C. Pascal, V. Parry, E. Fedorova, M. Braccini, P. Chemelle, N. Meyer, D. Oquab, D. Monceau, Y. Wouters, and M. Mantel, Corros. Sci. 93, 2015 (100–108). https://doi.org/10.1016/j.corsci.2015.01.007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ing. Pavel Kejzlar, Ph.D., for assistance in identifying the phase composition of the scales. This research was funded by the project of the Ministry of Education, Youth and Sports of the Czech Republic and the European Union–European Structural and Investment Funds in the framework of the Operational Programme Research, Development and Education – project Hybrid Materials for Hierarchical Structures, grant HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843. This publication was written with the support of the Institutional Endowment for the Long Term Conceptual Development of Research Institutes, as provided by the Ministry of Education, Youth and Sports of the Czech Republic in the year 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hotař.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hotař, A., Hotař, V., Švec, M. et al. The Effect of Niobium and Carbon on the Oxidation Resistance of Alloys Based on Fe3Al at 900°C. Oxid Met 98, 77–107 (2022). https://doi.org/10.1007/s11085-022-10111-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-022-10111-9

Keywords

Navigation