Skip to main content
Log in

Oxidation in Iron–Copper and Iron–Phosphorous Binary Alloys: Relating Alloying and Metal-Oxide Crystallography with Oxidation Resistance

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This study showed significant improvements in resistance to oxidation of iron (Fe) with copper (Cu: 0–3.4 weight %) or phosphorous (P: 0–0.12 weight %) alloying. All these binary alloys had bcc ferrite structure and maintained (i) a homo-epitaxy with the oxide (magnetite–Fe3O4) phase below 843 K and (ii) a pseudo-epitaxy with pro-eutectoid magnetite > 843 K. The epitaxial growth, in particular, introduced dislocations, residual stress, and misfit strain in the ‘thin’ (a few hundred nanometer) oxide film. These were stronger for oxides on near ND||<111> Fe grains, but reduced noticeably with an increase in Cu or P content. The reduced epitaxial strain, residual stress and associated dislocations, appeared to correlate with the improved oxidation resistance—relating alloying and metal-oxide crystallography to oxidation resistance in dilute Fe–Cu and Fe–P binary alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. K. D. H Bhadeshia and R. W. K. Honeycombe, Steel: Microstructure and Properties (Elsevier ltd; Cambridge, 2008).

  2. G. Gottstein, Physical Foundation of Materials Science (Springer, New York, 2004).

  3. B. Verlinden, J. Driver, I. Samajdar and R. D. Doherty, Thermo-mechanical processing of metallic material (Elsevier Ltd; Amsterdam, 2007).

  4. M. Morcillo, I. Díaz, B. Chico, H. Cano, and D. De la Fuente, Corrosion Science 83, 2014 (6–31).

    Article  CAS  Google Scholar 

  5. I. Díaz, H. Cano, P. Lopesino, D. de la Fuente, B. Chico, J. A. Jiménez, S. F. Medina, and M. Morcillo, Corrosion Science 141, 2018 (146–157).

    Article  Google Scholar 

  6. D. J. Young, High Temperature of oxidation and Corrosion of Metals, 2nd edn. (Elsevier Ltd; Amsterdam, 2008).

  7. D. Caplan, G. I. Sproule, R. J. Hussey, and M. J. Graham, Oxidation of Metals 13, 1979 (255).

    Article  CAS  Google Scholar 

  8. T. D. Nguyen, J. Zhang, and D. J. Youung, Oxidation of Metals 81, 2014 (549).

    Article  CAS  Google Scholar 

  9. G. Zijlstra, L. T. H. de Jeer, V. Ocelík, and JTh. M. De Hosson, Applied Surface Science 459, 2018 (459).

    Article  CAS  Google Scholar 

  10. N. G. Vannerberg and I. Svedung, Corrosion Science 11, 1971 (915).

    Article  CAS  Google Scholar 

  11. H. R. Abbasi, M. Bazdar, and A. Halvaee, Materials Science and Engineering: A 444, 2007 (314).

    Article  Google Scholar 

  12. E. Ahtoy, M. Picard, G. Leprince, A. Gelerie, Y. Wouters, X. Wang, and A. Atkinson, Materials Chemistry and Physics 148, 2014 (1157).

    Article  CAS  Google Scholar 

  13. C. Ostwald and H. J. Grabke, Corrosion Science 46, 2004 (1113).

    Article  CAS  Google Scholar 

  14. H. Asteman, J. E. Svensson, and L. G. Johansson, Oxidation of Metals 57, 2002 (193).

    Article  CAS  Google Scholar 

  15. A. M. de Sousa Malafaia, R. da Silva, C. A. Della Rovere, R. Baldan, L. Suárez-Fernández, J. M. Cabrera-Marrero, and M. F. de Oliveira, Journal of Alloys and Compounds 857, 2021 (158198).

    Article  Google Scholar 

  16. H. M. Cobb, The History of Stainless Steel (ASM International, 2010).

  17. N. Srinivasan, V. Kain, N. Birbilis, B. Sunil Kumar, M. N. Gandhi, P. V. Sivaprasad, G. Chai, A. Lodh, P. M. Ahmedabadi, and I. Samajdar, Corrosion Science 111, 2016 (404).

    Article  CAS  Google Scholar 

  18. M. H. Dean and U. Stimming, Corrosion Science 29, 1989 (199).

    Article  CAS  Google Scholar 

  19. C. Örnek, M. Långberg, J. Evertsson, G. Harlow, W. Linpé, L. Rullik, F. Carlà, R. Felici, U. Kivisäkk, and E. Lundgren, Journal of The Electrochemical Society 166, 2019 (3071).

    Article  Google Scholar 

  20. V. Maurice, W. Yang, and P. Marcus, Journal of The Electrochemical Society 143, 1996 (1182).

    Article  CAS  Google Scholar 

  21. N. Sato, Corrosion Science 37, 1995 (1947).

    Article  CAS  Google Scholar 

  22. R. Mondal, S. K. Bonagani, P. Raut, P. V. Sivaprasad, G. Chai, V. Kain, and I. Samajdar, Journal of The Electrochemical Society 167 (2020)

  23. Y.-N. Chang and F. I. Wei, Journal of Materials Science 24, 1989 (14).

    Article  CAS  Google Scholar 

  24. W. E. Boggs, R. H. Kachik, and G. E. Pellissier, Journal of The Electrochemical Society 114, 1967 (32).

    Article  CAS  Google Scholar 

  25. F. E. Luborsky, E. F. Koch, and C. R. Morelock, Journal of Applied Physics 34, 1963 (2905).

    Article  CAS  Google Scholar 

  26. G. K. L. Cranstoun and J. T. Lynch, Applications of Surface Science 5, 1980 (161).

    Article  CAS  Google Scholar 

  27. H. K. Mehtani, M. I. Khan, A. Durgaprasad, S. K. Deb, S. Parida, M. J. Prasad, D. Fullwood, R. D. Doherty, and I. Samajdar, Acta Materialia 190, 2020 (43).

    Article  CAS  Google Scholar 

  28. P. Van Houtte, The “MTM-FHM” and “MTM-TAY” software system – version2, Manual, Department of MME (KU Leuven, Belgium, 1995).

  29. J. Bunge, Texture Analysis in Materials Science: Mathematical Methods (Elsevier, 2013).

  30. B. B. He, Two-Dimensional X-ray Diffraction (John Wiley & Sons, New Jersey, 2009).

  31. A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R. D. Doherty, and I. Samajdar, Acta Materialia 129, 2017 (278).

    Article  CAS  Google Scholar 

  32. D. Kholi, R. Rakesh, V. P. Sinha, G. J. Prasad, and I. Samajdar, Journal of Nuclear Materials 447, 2014 (150).

    Article  Google Scholar 

  33. G. Kumar, A. K. Kanjarla, A. Lodh, J. Singh, R. Singh, D. Srivastava, G. K. Dey, N. Saibaba, R. D. Doherty, and I. Samajdar, Metallurgical and Materials Transactions A 47, 2016 (3882).

    Article  CAS  Google Scholar 

  34. K. V. Mani Krishna, R. Raghavan, D. Srivastava, G. K. Dey, S. K. Sahoo and I. Samajdar, Transactions of the Indian Institute of Metals 64 309.

  35. I. Groma, Physical Review B 57, 1998 (7335).

    Article  Google Scholar 

  36. B. D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company INC., Menlo Park, California, 1978).

  37. D. Balzar, N. Audebrand, M. R. Daymond, A. Fitch, A. Hewat, J. I. Langford, A. Le Bail, D. Louer, O. Masson, C. N. McCowan, N. C. Popa, P. W. Stephens and B. H. Toby, Journal of Applied Crystallography 37 911.

  38. A. Segmuller, Materials Science Forum 79–81, 1991 (493).

    Article  Google Scholar 

  39. H. K. Mehtani, M. I. Khan, A. Durgaprasad, S. K. Deb, S. Parida, M. J. N. V. Prasad, and I. Samajdar, Scripta Materialia 152, 2018 (44).

    Article  CAS  Google Scholar 

  40. D. L. De Faria, S. Venâncio Silva, and M. T. De Oliveira, Journal of Raman spectroscopy 28, 1997 (873).

    Article  Google Scholar 

  41. T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Kinsman Road Materials Park Ohio, USA).

  42. B. E. Dunlap, T. J. Ruggles, D. T. Fullwood, B. Jackson, and M. A. Crimp, Ultramicroscopy 184, 2018 (125).

    Article  CAS  Google Scholar 

  43. B. Pieraggi, Oxidation of Metals 27, 1987 (178).

    Article  Google Scholar 

  44. H. K. Mehtani, M. I. Khan, B. Nagamani Jaya, S. Parida, M. J. N. V. Prasad, and I. Samajdar, Journal of Alloys and Compounds 871, 2021 (159583).

    Article  CAS  Google Scholar 

  45. C. Korte, J. Keppner, A. Peters, N. Schichtel, H. Aydin, and J. Janek, Physical Chemistry Chemical Physics 16, 2014 (24575).

    Article  CAS  Google Scholar 

  46. K. Wen, W. Lv, and W. He, Journal of Materials Chemistry A 3, 2015 (20031).

    Article  CAS  Google Scholar 

  47. J. G. Goedjen, J. H. Stout, Q. Guob, and D. A. Shores, Materials Science and Engineering: A 177, 1994 (115).

    Article  CAS  Google Scholar 

  48. A. M. Huntz, Materials Science and Engineering: A 201, 1995 (211).

    Article  Google Scholar 

  49. B. Panicaud, J.-L. Grosseau-Poussard, M. Kemdehoundja, and J.-F. Dinhut, Computational Materials Science 46, 2009 (42).

    Article  CAS  Google Scholar 

  50. Y. Hancock and T. R. Finlayson, Philosophical Magazine 89, 2009 (1).

    Article  Google Scholar 

  51. B. P. N. Reddy and P. J. Reddy, Physica Status Solidi 17, 1973 (589).

    Article  CAS  Google Scholar 

  52. F. H. Stott and A. Atkinson, Materials at High Temperatures 12, 1995 (195).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from CoEST (center of excellence in steel technology, IIT Bombay). Supply of the material from Tata Steel and support from DST-SERB are also acknowledged. All measurements were conducted at IIT Bombay SAIF-CRNTS (Raman and TEM measurements) and the National Facility of Texture and OIM (X-ray + EBSD). Finally, a special thanks to Dr. Renè de Kloe (Application Engineer: TSL-EDAXTM) for help in optimizing Hough space for oxide indexing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Samajdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehtani, H.K., Khan, M.I., Raut, P. et al. Oxidation in Iron–Copper and Iron–Phosphorous Binary Alloys: Relating Alloying and Metal-Oxide Crystallography with Oxidation Resistance. Oxid Met 97, 417–440 (2022). https://doi.org/10.1007/s11085-022-10099-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-022-10099-2

Keywords

Navigation