Skip to main content
Log in

Formation of Si Diffusion Layer on Fe and Fe–Cr Alloy and High-Temperature Corrosion Resistance in a Molten Salt

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A thick silicon-enriched layer was formed on the surface of Fe and Fe-15 mass% Cr alloys by Si electrodeposition using a molten salt as the medium. This surface-treated sample was embedded in the molten salt and the high-temperature corrosion behavior was investigated. For comparison, the high-temperature corrosion behavior of untreated samples was also investigated. The effect of the surface Si conversion by the molten salt electrodeposition treatment on the high-temperature corrosion resistance of the Fe and Fe-15 mass% Cr alloys was then evaluated. As a result, the surface Si electrodeposition-treated Fe did not improve the corrosion resistance as compared to the untreated sample. However, for the Fe-15 mass% Cr alloy, the untreated corrosion weight loss sharply increased and the corrosion rate increased. On the other hand, the corrosion rate was lower on the surface of the Si-treated sample. After the high-temperature corrosion test, a cross section of the sample to which the molten salt was attached was observed and analyzed by SEM and EPMA. As a result, in the untreated sample of Fe, the elemental metal dissolved in the molten salt. In the Si electrodeposition-treated Fe, cracks were generated at the Fe interface between the electrodeposition layer and the substrate, and corrosion proceeded from there. On the other hand, for the Fe-15 mass% Cr alloy, it was confirmed that the surface Si-treated sample formed a continuous SiO2 layer on the surface. It is considered that this SiO2 improved the corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. R. Miles, T. R. Miles, L. L. Baxter, R. W. Bryers, B. M. Jenkins, and L. L. Oden, Biomass and Bioenergy 10, 1996 (125).

    Article  CAS  Google Scholar 

  2. H. P. Michelsen, F. Frandsen, K. Dam-Johansen, and O. H. Larsen, Fuel Processing Technology 54, 1998 (95).

    Article  CAS  Google Scholar 

  3. H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, and L. L. Baxter, Progress in Energy and Combustion Science 26, 2000 (283).

    Article  CAS  Google Scholar 

  4. Y. Kawahara, Corrosion Science 44, 2002 (223).

    Article  CAS  Google Scholar 

  5. S. Enestam, D. Bankiewicz, J. Tuiremo, K. Mäkelä, and M. Hupa, Fuel 104, 2013 (294).

    Article  CAS  Google Scholar 

  6. J. Metsäjoki, E. Huttunen-Saarivirta, and T. Lepistö, Fuel 133, 2014 (173).

    Article  Google Scholar 

  7. K. L. Khatri, A. R. Muhammad, S. A. Soomro, N. A. Tunio, and M. M. Ali, Renewable and Sustainable Energy Reviews 143, 2021 (110862).

    Article  Google Scholar 

  8. L. A. Hansen, H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, S. Hørlyck, and A. Karlsson, Fuel Processing Technology 64, 2000 (189).

    Article  CAS  Google Scholar 

  9. Y. Shinata and Y. Nishi, Oxidation of Metals 26, 1986 (201).

    Article  CAS  Google Scholar 

  10. B. P. Mohanty and A. A. Shores, Corrosion Science 46, 2004 (2893).

    Article  CAS  Google Scholar 

  11. D. A. Shores and B. P. Mohanty, Corrosion Science 46, 2004 (2909).

    Article  CAS  Google Scholar 

  12. H. Singh, D. Puri, and S. Prakash, Surface and Coating Technology 192, 2005 (27).

    Article  CAS  Google Scholar 

  13. C. Pettersson, J. Pettersson, H. Asteman, J.-E. Svensson, and L.-G. Johansson, Corrosion Science 48, 2006 (1368).

    Article  CAS  Google Scholar 

  14. H. T. Ma, C. H. Zhou, and L. Wang, Corrosion Science 51, 1861 (2009).

    Google Scholar 

  15. J. Pettersson, J.-E. Svensson, and L.-G. Johansson, Oxidation of Metals 72, 2009 (159).

    Article  CAS  Google Scholar 

  16. J. Zhang, Z. Rahman, X. Wang, Z. Wang, P. Li, Y. Wang, D. Bate, K. Zhao, and H. Tan, Journal of Environmental Management 263, 2020 (110411).

    Article  CAS  Google Scholar 

  17. Y. S. Zhang, Journal of Electrochemical Society 133, 1986 (655).

    Article  CAS  Google Scholar 

  18. D. Z. Shi and R. A. Rapp, Journal of Electrochemical Society 133, 1986 (849).

    Article  CAS  Google Scholar 

  19. R. A. Rapp, Corrosion Science 44, 2002 (209).

    Article  CAS  Google Scholar 

  20. T. Ishitsuka and K. Nose, Corrosion Science 44, 2002 (247).

    Article  CAS  Google Scholar 

  21. M. Fukumoto, T. Suzuki, M. Sano, M. Hirade, and M. Hara, Materials Transaction 45, 2004 (2994).

    Article  CAS  Google Scholar 

  22. T. Munisamy and A. J. Bard, Electrochimica Acta 55, 2010 (3797).

    Article  CAS  Google Scholar 

  23. K. Yasuda, K. Maeda, R. Hagiwara, T. Homma, and T. Nohira, Journal of the Electrochemical Society 164, 2017 (D67).

    Article  CAS  Google Scholar 

  24. N. Shah and I. Mukhopadyay, Materialstoday: Proceedings 4, 2017 (12716).

    Google Scholar 

  25. M. Fukumoto, M. Hara, and T. Nagataki, Oxidation of Metals 61, 2004 (1).

    Article  CAS  Google Scholar 

  26. M. Fukumoto, R. Yamashita, and M. Hara, Oxidation of Metals 62, 2004 (309).

    Article  CAS  Google Scholar 

  27. M. Hara, Y. Matsuda, M. Fukumoto, and T. Narita, Oxidation of Metals 70, 2008 (295).

    Article  CAS  Google Scholar 

  28. M. Fukumoto, C. Tachikawame, Y. Matsuzaka, and M. Hara, Corrosion Science 56, 2012 (105).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihisa Fukumoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukumoto, M., Nakajima, K. & Sakuraba, T. Formation of Si Diffusion Layer on Fe and Fe–Cr Alloy and High-Temperature Corrosion Resistance in a Molten Salt. Oxid Met 97, 401–415 (2022). https://doi.org/10.1007/s11085-021-10096-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10096-x

Keywords

Navigation