Skip to main content
Log in

The Effect of Gd Additions on the Oxidation Resistance of TiAl Alloys Prepared by SPS

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation resistance of TiAl alloy is still a problem in air above 800 ℃. Gadolinium is an active element which is known to improve the oxidation resistance of Mg alloy. Very dense TiAl-Gd alloys with several compositions were prepared by spark plasma sintering (SPS). Isothermal oxidation testing of sintered alloy in air at 800 ℃ was carried out for 500 h. The sintering microstructure, oxidation kinetics, oxide-layer structure and oxidation mechanism were systematically studied. The results show that Gd-containing TiAl alloy shows improved oxidation resistance at high temperature compared with alloy without Gd. The Gd-rich phase distributed along the boundary of powder particles can hinder the outward diffusion of Ti and Al and preferentially consume oxygen in the matrix, thus inhibiting the growth of oxide scale and improving the spalling resistance of TiAl alloy. TiAl-0.3Gd alloy has excellent oxidation resistance, with the lowest mass gain and the thinnest oxide scale of 2.64 mg/cm2 and 19.7 μm, respectively. This result will lay a foundation for the design of TiAl-based alloy with high-temperature oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Sun, Z. Wang, Y. Du, and J. Yuan, Densification mechanism and microstructure evolution of Ti-48Al-2Cr-8Nb alloy by spark plasma sintering. Cryst Res Technol. 54, (11), 2019 (1900107).

    Article  CAS  Google Scholar 

  2. H. W. Liu, D. P. Bishop, and K. P. Plucknett, Densification behaviour and microstructural evolution of Ti-48Al consolidated by spark plasma sintering. J Mater Sci. 52, 2017 (613–627).

    Article  CAS  Google Scholar 

  3. R. Muñoz-Moreno, E. M. Ruiz-Navas, B. Srinivasarao, and J. M. Torralba, Microstructural development and mechanical properties of PM Ti–45Al–2Nb–2Mn–0.8 vol.%TiB2 processed by field assisted hot pressing. Journal of Materials Science and Technology. 230, 2014 (1145–1154).

    Article  Google Scholar 

  4. M. P. Bacos, S. Ceccacci, J. P. Monchoux, et al., Oxidation behavior of a spark plasma sintered Ti–48Al–2W–0.1B alloy at 800 °C. Oxid Met. 93, 2020 (587–600).

    Article  CAS  Google Scholar 

  5. Y. Garip and O. Ozdemir, A study of the cycle oxidation behavior of the Cr/Mn/Mo alloyed Ti–48Al–based intermetallics prepared by ECAS. J Alloys Compd. 818, 2020 (152818).

    Article  CAS  Google Scholar 

  6. P. V. Cobbinah, W. Matizamhuka, R. Machaka, M. B. Shongwe, and Y. Yamabe-Mitarai, The effect of Ta additions on the oxidation resistance of SPS-produced TiAl alloys. Int J Adv Manuf Tech. 106, 2020 (3203–3215).

    Article  Google Scholar 

  7. N. Laska, R. Braun, and S. Knittel, Oxidation behavior of protective Ti-Al-Cr based coatings applied on the γ-TiAl alloys Ti-48-2-2 and TNM-B1. Surf Coat Technol. 349, 2018 (347–356).

    Article  CAS  Google Scholar 

  8. K. Zhang, L. Xin, Y. Lu, et al., Improving oxidation resistance of γ-TiAl based alloy by depositing TiAlSiN coating: effects of silicon. Corros Sci. 179, 2021 (109151).

    Article  CAS  Google Scholar 

  9. R. Swadźba, L. Swadźba, B. Mendala, P.-P. Bauer, N. Laska, and U. Schulz, Microstructure and cyclic oxidation resistance of Si-aluminide coatings on γ-TiAl at 850 ℃. Surf Coat Technol. 403, 2020 (126361).

    Article  Google Scholar 

  10. P. Zhao, X. Li, H. Tang, et al., Improved high-temperature oxidation properties for Mn-containing Beta-Gamma TiAl with W addition. Oxid Met. 93, 2020 (433–448).

    Article  CAS  Google Scholar 

  11. L. L. Zhao, G. Y. Li, L. Q. Zhang, et al., Influence of Y addition on the long time oxidation behaviors of high Nb containing TiAl alloys at 900 °C. Intermetallics. 18, 2010 (1586–1596).

    Article  CAS  Google Scholar 

  12. Y. Pan, X. Lu, M. D. Hayat, et al., Effect of Sn addition on the high-temperature oxidation behavior of high Nb-containing TiAl alloys. Corros Sci. 166, 2020 (108449).

    Article  CAS  Google Scholar 

  13. D. Pilone, F. Felli, and A. Brotzu, High temperature oxidation behaviour of TiAl-Cr-Nb-Mo alloys. Intermetallics. 43, 2013 (131–137).

    Article  CAS  Google Scholar 

  14. Y. Pan, X. Lu, T. Hui, et al., High-temperature oxidation behaviour of TiAl alloys with Co addition. J Mater Sci. 56, 2020 (815–827).

    Article  Google Scholar 

  15. X. Gu, F. Cao, N. Liu, et al., Microstructural evolution and mechanical properties of a high yttrium containing TiAl based alloy densified by spark plasma sintering. J Alloys Compd. 819, 2020 (153264).

    Article  CAS  Google Scholar 

  16. X. Gu, S. Jiang, F. Cao, et al., A β-solidifying TiAl alloy reinforced with ultra-fine Y-rich precipitates. Scr Mater 192, 2021 (55–60).

    Article  CAS  Google Scholar 

  17. V. A. C. Haanappel, H. Clemens, and M. F. Stroosnijdera, The high temperature oxidation behaviour of high and low alloyed TiAl-based intermetallics. Intermetallics. 10, 2002 (293–305).

    Article  CAS  Google Scholar 

  18. P. V. Panin, A. S. Kochetkov, A. V. Zavodov, and E. A. Lukina, Effect of Gd addition on phase composition, structure, and properties of beta-solidifying TiAl-based alloy with Zr and Cr content variability. Intermetallics. 121, 2020 (106781).

    Article  CAS  Google Scholar 

  19. V. S. Sokolovsky, N. D. Stepanov, S. V. Zherebtsov, et al., The effect of Gd addition on the kinetics of α2→γ transformation in γ-TiAl based alloys. Intermetallics. 120, 2020 (106759).

    Article  CAS  Google Scholar 

  20. K. Xia, X. Wu, and D. Song, Effects of Gd addition, lamellar spacing and loading direction on creep behaviour of a fully lamellar Ti-44Al-1Mn-2.5Nb alloy. Acta Mater. 52, 2004 (841–849).

    Article  CAS  Google Scholar 

  21. R. Ding, I. P. Jones, Y. Chiu, and R. Chen, Microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si alloys with and without Gd. Intermetallics. 20, 2012 (123–134).

    Article  CAS  Google Scholar 

  22. C. Cheng, Q. Lan, Q. Liao, et al., mEffect of Ca and Gd combined addition on ignition temperature and oxidation resistance of AZ80. Corros Sci. 160, 2019 (108176).

    Article  CAS  Google Scholar 

  23. Z. Trzaska, G. Bonnefont, G. Fantozzi, and J. P. Monchoux, Comparison of densification kinetics of a TiAl powder by spark plasma sintering and hot pressing. Acta Mater. 135, 2017 (1–13).

    Article  CAS  Google Scholar 

  24. C. Shi, K. Zhang, Z. Lu, and H. Xiao, Microstructure evolution and mechanical properties of Ti46.5Al2Cr1.8Nb-(W, B) alloys fabricated by spark plasma sintering and pulse current assisted isothermal forging. Mater Sci Eng. A. 747, 2019 (98–110).

    Article  CAS  Google Scholar 

  25. A. Couret, T. Voisin, M. Thomas, and J.-P. Monchoux, Development of a TiAl Alloy by Spark Plasma Sintering. JOM. 69, 2017 (2576–2582).

    Article  CAS  Google Scholar 

  26. Y. Garip, Investigation of isothermal oxidation performance of TiAl alloys sintered by different processing methods. Intermetallics. 127, 2020 (106985).

    Article  CAS  Google Scholar 

  27. L. Mengis, A. S. Ulrich, P. Watermeyer, C. H. Liebscher, and M. C. Galetz, Oxidation behaviour and related microstructural changes of two β0–phase containing TiAl alloys between 600 °C and 900 °C. Corros Sci. 178, 2021 (109085).

    Article  CAS  Google Scholar 

  28. D. Zhang, N. Liu, Y. Chen, et al., Microstructure Evolution and Mechanical Properties of PM-Ti43Al9V0.3Y. Alloy Materials. 13, (1), 2020 (198).

    Article  CAS  Google Scholar 

  29. S. Tian, H. Jiang, G. Zhang, Y. Zhang, H. Lin, and Y. Yang, Investigation on the initial oxidation behavior of TiAl. Alloy Mater Res Express. 6, (10), 2019 (106595).

    Article  CAS  Google Scholar 

  30. Y. MIishin and C. Herzig, Diffusion in the Ti-Al system. Acta Mater. 48, 2000 (589–623).

    Article  Google Scholar 

  31. N. S. Neelam, S. Banumathi, A. Bhattacharjee, N. R. Zafir, and M. D. Alam, Comparison of the isothermal and cyclic oxidation behavior of Cr and Mo containing γ-TiAlNb alloys. Corros Sci. 163, 2020 (108300).

    Article  CAS  Google Scholar 

  32. X. Wang, R. Luo, F. Liu, et al., Characterization of Gd-rich precipitates in a fully lamellar TiAl alloy. Scr Mater. 137, 2017 (50–54).

    Article  CAS  Google Scholar 

  33. Y. Wu, Y. Umakoshi, X. W. Li, and T. Narita, Isothermal oxidation behavior of Ti-50Al alloy with Y additions at 800 and 900°C. Oxid Met. 66, 2006 (321–348).

    Article  CAS  Google Scholar 

  34. Y. Garip and O. Ozdemir, Comparative study of the oxidation and hot corrosion behaviors of TiAl-Cr intermetallic alloy produced by electric current activated sintering. J Alloys Compd. 780, 2019 (364–377).

    Article  CAS  Google Scholar 

  35. R. Swadźba, K. Marugi, and Ł Pyclik, STEM investigations of γ-TiAl produced by additive manufacturing after isothermal oxidation. Corros Sci. 169, 2020 (108617).

    Article  Google Scholar 

  36. F. P. Ping, Q. M. Hu, A. V. Bakulin, S. E. Kulkova, and R. Yang, Alloying effects on properties of Al2O3 and TiO2 in connection with oxidation resistance of TiAl. Intermetallics. 68, 2016 (57–62).

    Article  CAS  Google Scholar 

  37. D. J. Kim, D. Y. Seo, J. K. Hong, S. E. Kim, and D. Y. Keum, Cyclic-oxidation behaviours of the powder-metallurgy TiAl-4Nb-3Mn and TiAl-2Nb-2Mo beta-gamma alloys. Can Metall Q. 56, 2016 (123–136).

    Article  Google Scholar 

  38. Y. Tan, H. Fang, R. Chen, et al., Microalloying effects of Ho on microstructure evolution and high temperature properties of Ti46Al4Nb1Mo alloy. Intermetallics. 126, 2020 (106883).

    Article  CAS  Google Scholar 

  39. Zhang GY, Liu CM, Fang GL (2017) First principles studies of the influences mechanism of Y, Hf elements on the high temperature oxidation of γ-TiAl alloys. In: IOP Conference Series: Materials Science and Engineering. 167(1):012049

  40. Y. Wu, S. K. Hwang, K. Hagihara, and Y. Umakoshi, Isothermal oxidation behavior of two-phase TiAl-Mn-Mo-C-Y alloys fabricated by different processes. Intermetallics 14, 2006 (9–23).

    Article  CAS  Google Scholar 

  41. X. Gong, R. R. Chen, H. Z. Fang, et al., Synergistic effect of B and Y on the isothermal oxidation behavior of TiAl-Nb-Cr-V alloy. Corros Sci. 131, 2018 (376–385).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Key Research and Development Program of China (No. 2016YFB1200505) and Cultivation project for original scientific research instruments and equipment of Southwest Jiaotong University (NO. XJ2021KJZK041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Sun, H., Cai, Z. et al. The Effect of Gd Additions on the Oxidation Resistance of TiAl Alloys Prepared by SPS. Oxid Met 97, 323–339 (2022). https://doi.org/10.1007/s11085-021-10095-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10095-y

Keywords

Navigation