Skip to main content

Oxygen Diffusion in Ti–10Mo–Zr Alloys Studied Using Mechanical Spectroscopy


Mechanical spectroscopy measurements (internal friction) have mainly been used as an information resource regarding solute behavior in metals and alloys, such as solubility limit, interstitial concentration, and diffusion. In this paper, the oxygen diffusion in Ti–10Mo–Zr alloys was investigated using mechanical spectroscopy measurements. Using the Arrhenius law and simple mathematical analysis of the relaxation peaks, the relaxation parameters were obtained. A relaxation spectrum was observed, associated with the interstitial diffusion of oxygen in a solution of Ti–10Mo–10Zr alloys. The activation energy (1.55 ± 0.01) eV and the diffusivity of oxygen (1.6 ± 0.5) × 10–4 cm2/s in the alloys were obtained using a mathematical treatment of the structures derived from the relaxation time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.


  1. 1.

    M. Kaur and K. Singh, Materials Science and Engineering: C 102, 2019 (844–862).

    CAS  Article  Google Scholar 

  2. 2.

    M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Progress in Materials Science 54, (3), 2009 (397–425).

    CAS  Article  Google Scholar 

  3. 3.

    E. W. Collings, The Physical Metallurgy of Titanium Alloys, (ASM International, Ohio, 1989).

    Google Scholar 

  4. 4.

    G. Lütjering and J. C. Williams, Titanium, 2nd ed (Springer, Berlin, 2007),.

    Google Scholar 

  5. 5.

    W. F. Ho, C. P. Ju, and J. H. Chern Lin, Biomaterials 20, (22), 1999 (2115–2122).

    CAS  Article  Google Scholar 

  6. 6.

    R. Kolli and A. Devaraj, Metals 8, (7), 2018 (506).

    Article  Google Scholar 

  7. 7.

    D. R. N. Correa, F. B. Vicente, T. A. G. Donato, V. E. Arana-Chavez, M. A. R. Buzalaf, and C. R. Grandini, Materials Science & Engineering C-Materials For Biological Applications 34, 2014 (354–359).

    CAS  Article  Google Scholar 

  8. 8.

    W.-F. Ho, W.-K. Chen, S.-C. Wu, and H.-C. Hsu, J Mater Sci: Mater Med 19, (10), 2008 (3179–3186).

    CAS  Article  Google Scholar 

  9. 9.

    X. Liu, S. Chen, J. K. H. Tsoi, and J. P. Matinlinna, Regenerative Biomaterials 4, (5), 2017 (315–323).

    CAS  Article  Google Scholar 

  10. 10.

    H. M. Grandin, S. Berner, and M. Dard, Materials 5, (8), 2012 (1348).

    CAS  Article  Google Scholar 

  11. 11.

    M. Lubas, A. Kulakovska, and P. Gembara, Metal Science and Heat Treatment 58, (7), 2016 (417–420).

    CAS  Article  Google Scholar 

  12. 12.

    D. R. N. Correa, P. A. B. Kuroda, and C. R. Grandini, Advanced Materials Research 922, 2014 (75–80).

    Article  Google Scholar 

  13. 13.

    G. Lütjering, J. C. Williams, A. Gysler Microstructure and Mechanical Properties of Titanium Alloys. in Microstructure and Properties of Materials. (1998), p. 1–77.

  14. 14.

    D. Banerjee and J. C. Williams, Acta Materialia 61, (3), 2013 (844–879).

    CAS  Article  Google Scholar 

  15. 15.

    M. Li, X. Min, K. Yao, and F. Ye, Acta Materialia 164, 2019 (322–333).

    CAS  Article  Google Scholar 

  16. 16.

    M. Niinomi, M. Nakai, International Journal of Biomaterials 2011, 836587, 836510 pages (2011).

  17. 17.

    J. Nagels, M. Stokdijk, and P. M. Rozing, Journal of Shoulder and Elbow Surgery 12, (1), 2003 (35–39).

    Article  Google Scholar 

  18. 18.

    W. Xu, et al., Corrosion Science 168, 2020 108557.

    CAS  Article  Google Scholar 

  19. 19.

    H. Luo, et al., Materials Science and Engineering: C 117, 2020 111306.

    CAS  Article  Google Scholar 

  20. 20.

    N. L. Okamoto, S. Kasatani, M. Luckabauer, M. Tane, and T. Ichitsubo, Scripta Materialia 188, 2020 (88–91).

    CAS  Article  Google Scholar 

  21. 21.

    M. S. Blanter, I. S. Golovin, H. Neuhäuser, and H.-R. Sinning, Internal Friction in Metallic Materials, (Springer-Verlag, Berlin, 2007).

    Book  Google Scholar 

  22. 22.

    A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids, (Academic Press, New York, 1972).

    Google Scholar 

  23. 23.

    Z. Wei, J. Yu, Y. Lu, J. Han, C. Wang, and X. Liu, Materials & Design 198, 2021 109287.

    CAS  Article  Google Scholar 

  24. 24.

    R. A. Nogueira, C. R. Grandini, and A. P. R. A. Claro, J Mater Sci 43, (17), 2008 (5977–5981).

    CAS  Article  Google Scholar 

  25. 25.

    J. R. S. M. Jr, R. A. Nogueira, R. O. d. Araújo, C. R.Grandini, Defect and Diffusion Forum 326-328, 696-701 (2012).

  26. 26.

    R. A. Nogueira and C. R. Grandini, Defect and Diffusion Forum 326–328, 2012 (702–707).

    Article  Google Scholar 

  27. 27.

    ROd. Araújo, M. A. R. Buzalaf, and C. R. Grandini, Materials Science Forum 869, 2016 (940–945).

    Article  Google Scholar 

  28. 28.

    ASTM: E1876–01 - Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. In: E1876–01 - Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration, vol. E1876–01. ASTM International, Philadelphia (USA), (2002)

  29. 29.

    A. Puskar, Internal Friction of Materials, (Cambridge International Science Publishing, Cambridge, 2001).

    Google Scholar 

  30. 30.

    J. D. Fast, Gases in Metals, (Philips Technical Library, London, 1976).

    Book  Google Scholar 

  31. 31.

    M. Weller, G. Y. Li, J. X. Zhang, T. S. Kê, and J. Diehl, Acta Metallurgica 29, (6), 1981 (1047–1054).

    CAS  Article  Google Scholar 

  32. 32.

    D. David, E. A. Garcia, X. Lucas, and G. Beranger, Journal of the Less Common Metals 65, (1), 1979 (51–69).

    CAS  Article  Google Scholar 

  33. 33.

    W. P. Roe, H. R. Palmer, W. R. Opie, Transactions of American Society of Metals 52, 191-200 (1960).

  34. 34.

    M. H. Song, S. M. Han, D. J. Min, G. S. Choi, and J. H. Park, Scripta Materialia 59, (6), 2008 (623–626).

    CAS  Article  Google Scholar 

  35. 35.

    T. Lutz, J. W. Gerlach, and S. Mändl, Surface and Coatings Technology 201, (15), 2007 (6690–6694).

    CAS  Article  Google Scholar 

  36. 36.

    H. Guleryuz and H. Cimenoglu, Journal of Alloys and Compounds 472, (1–2), 2009 (241–246).

    CAS  Article  Google Scholar 

  37. 37.

    F. B. Vicente and C. R. Grandini, Defect and Diffusion Forum 354, 2014 (159–165).

    Article  Google Scholar 

  38. 38.

    H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, (Spinger-Verlag, Berlin, 2007).

    Book  Google Scholar 

  39. 39.

    J. Dąbrowa and M. Danielewski, Metals 10, (3), 2020 (347).

    Article  Google Scholar 

Download references


The authors thank the Brazilian agencies CNPq (grants #481.313/2012-5 and #307.279/2013-8) and FAPESP (grant #2013/09.063-5) for their financial support.

Author information




MRS was involved in the conceptualization, investigation, methodology, and writing—original draft preparation. ROA contributed to the investigation, methodology, writing—reviewing. GPSS was involved in the investigation. CRG contributed to the supervision, funding acquisition, resources, writing—reviewing, and editing.

Corresponding author

Correspondence to Carlos Roberto Grandini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.R., de Araújo, R.O., Suarez, G.P.S. et al. Oxygen Diffusion in Ti–10Mo–Zr Alloys Studied Using Mechanical Spectroscopy. Oxid Met (2021).

Download citation


  • Ti alloys
  • Interstitial oxygen
  • Diffusion
  • Dynamical mechanical analysis