Skip to main content

Effects of External Stress on High-Temperature Corrosion Behavior of T92 Ferrite Steel with Na2SO4-K2SO4 Molten Salts

Abstract

This paper reports an experimental study of the oxidation–sulfidation behavior of T92 steel in a complex environment consisting of a combination of high temperature (700 °C), SO2, molten sulfate salts, and applied stresses. The corrosion products, morphologies, and element distributions of corrosion scales were investigated in detail by SEM and XRD. Results indicate that the formation of sulfides in the deep layer where the p(O2) is low-level prevents the reformation of a protective layer after the damage of the Cr2O3 layer. It is also noted that based on the data of maximum corrosion depth, when stresses are applied, the extent of corrosion had been alleviated, which is ascribed to that the applied stress also accelerated the fast formation of Cr2O3. However, the applied stress is also thought to accelerate the damage of the protective layer by inducing more boundaries of products and increasing the possibility of exfoliation of a corrosion scale. Thus, in the limited exposure duration to the corrosive environment in this study, there should be a “critical stress” under which the specimens present the best corrosion resistance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Y. N. Chang and F. I. Wei, High-temperature chlorine corrosion of metals and alloys[J]. Journal of Materials Science 26, (14), 1991 (3693–3698).

    CAS  Article  Google Scholar 

  2. 2.

    D. L. Douglass, P. Kofstad, P. Rahmel, et al., International Workshop on High-Temperature Corrosion[J]. Oxidation of Metals 45, (5–6), 1996 (529–620).

    CAS  Article  Google Scholar 

  3. 3.

    M. Db, High temperature corrosion of alloys and coatings in oil- and coal-fired boilers[J]. Materials Science & Engineering 88, (4), 1987 (313–320).

    Google Scholar 

  4. 4.

    Muelas GR, Laboratory corrosion testing of coatings and substrates under a reducing atmosphere simulating coal combustion. European Federation of Corrosion Workshop: Beyond Single Oxidants: Frankfurt, Alemania, 2012.

  5. 5.

    K. Godlewski, Review on high temperature corrosion of PCF boilers in Poland[J]. Materials & Corrosion 39, (2), 1988 (67–69).

    CAS  Article  Google Scholar 

  6. 6.

    J. Fu, L. Wei, N. Li, et al., Experimental study on temperature, heat flux, strain and stress distribution of boiler water walls[J]. Applied Thermal Engineering 2017, (113), 2017 (419–425).

    Article  Google Scholar 

  7. 7.

    Karlsson S, Åmand LE, Liske J. Reducing High Temperature Corrosion when Burning Waste by Adding Digested Sewage Sludge[J]. Swedish - Finnish Flame Days, January 26–27 2011 in Piteå, Sweden, The Swedish and Finnish National Committees of the International Flame Research Foundation (IFRF) and The Scandinavian - Nordic Section of the Combustion Institute (SNCI), 2011.

  8. 8.

    Lai GY. High temperature corrosion of engineering alloys[M]. Materials Park,Ohio,United States: ASM International, 1990.

  9. 9.

    P. F. Tortorelli and K. Natesan, Critical factors affecting the high-temperature corrosion performance of iron aluminides[J]. Materials Science & Engineering A 258, (1–2), 1998 (115–125).

    Article  Google Scholar 

  10. 10.

    D. Das, R. Balasubramaniam, and M. N. Mungole, Hot corrosion of carbon-alloyed Fe 3 Al-based iron aluminides[J]. Materials Science & Engineering A 338, (1–2), 2002 (24–32).

    Article  Google Scholar 

  11. 11.

    N. N. Aung and X. Liu, Effect of SO2 in flue gas on coal ash hot corrosion of Inconel 740 alloy – A high temperature electrochemical sensor study[J]. Corrosion Science 76, (11), 2013 (390–402).

    CAS  Article  Google Scholar 

  12. 12.

    N. N. Aung and X. Liu, Effect of temperature on coal ash hot corrosion resistance of Inconel 740 superalloy - ScienceDirect[J]. Corrosion Science 82, (2), 2014 (227–238).

    CAS  Article  Google Scholar 

  13. 13.

    Pint B, JK T. Effect of oxy-firing on corrosion rates at 600°-800°C. NACE - International Corrosion Conference Series, 2013.

  14. 14.

    I. Ja’baz, F. Jiao, X. Wu, et al., Influence of gaseous SO2 and sulphate-bearing ash deposits on the high-temperature corrosion of heat exchanger tube during oxy-fuel combustion[J]. Fuel Processing Technology 167, 2017 (193–204).

    CAS  Article  Google Scholar 

  15. 15.

    S. Liu, Z. Liu, Y. Wang, et al., A comparative study on the high temperature corrosion of TP347H stainless steel, C22 alloy and laser-cladding C22 coating in molten chloride salts[J]. Corrosion Science 83, (JUN), 2014 (396–408).

    CAS  Article  Google Scholar 

  16. 16.

    G. Calvarin-Amiri, R. Molins, and A. M. Huntz, Effect of the Application of a Mechanical Load on the Oxide-Layer Microstructure and on the Oxidation Mechanism of Ni–20Cr Foils[J]. Oxidation of Metals 53, (3–4), 2000 (399–426).

    CAS  Article  Google Scholar 

  17. 17.

    C. Mathieu and S. Toesca, Effects of mode-I stresses on the oxidation and failure mechanisms of Ni-20Cr and Ni-15Cr-8Fe alloys in sulfur dioxide[J]. Oxidation of Metals 39, (3–4), 1993 (155–165).

    CAS  Article  Google Scholar 

  18. 18.

    A. Rahmel, G. C. Wood, and P. K. L. Douglass, International Workshop on “Critical Issues Concerning the Mechanisms of High-Temperature Corrosion”[J]. Oxidation of Metals 23, (5), 1985 (253–337).

    Article  Google Scholar 

  19. 19.

    A. Schnaas and H. J. Grabke, High-temperature corrosion and creep of Ni-Cr-Fe alloys in carburizing and oxidizing environments[J]. Oxidation of Metals 12, (5), 1978 (387–404).

    CAS  Article  Google Scholar 

  20. 20.

    B. R. Barnard, P. K. Liaw, R. A. Buchanan, et al., Affects of applied stresses on the isothermal and cyclic high-temperature oxidation behavior of superalloys[J]. Materials Science & Engineering A 527, (16–17), 2010 (3813–3821).

    Article  Google Scholar 

  21. 21.

    R. Viswanathan and W. Bakker, Materials for ultrasupercritical coal power plants—Turbine materials: Part II[J]. Journal of Materials Engineering & Performance 10, (1), 2001 (96–101).

    CAS  Article  Google Scholar 

  22. 22.

    R. Viswanathan, K. Coleman, and U. Rao, Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessels & Piping 83, (11–12), 2006 (778–783).

    CAS  Article  Google Scholar 

  23. 23.

    R. Viswanathan, J. Henry, J. Tanzosh, et al., U.S. Program on Materials Technology for Ultra-Supercritical Coal Power Plants[J]. Journal of Materials Engineering & Performance 14, (3), 2005 (281–292).

    CAS  Article  Google Scholar 

  24. 24.

    Y. Zhou, L. Jiansan, W. Haitong, et al., Experimental study on high temperature corrosion of T92 steel used for superheater of ultra supercritical unit boilers[J]. Thermal Power Generation 46, (11), 2017 (80–84).

    Google Scholar 

  25. 25.

    Rapp RA. Chemistry and electrochemistry of hot corrosion of metals[J]. Material Science & Engineering, 1987, 87 (none): 319–327.

  26. 26.

    Cao G, Firouzdor V, Sridharan K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012, 60 (Jul.): 246–255.

  27. 27.

    A. Rr, Hot corrosion of materials: a fluxing mechanism[J]. Corrosion Science 44, 2002 (209–221).

    Article  Google Scholar 

  28. 28.

    L. Shi, Accelerated oxidation of iron induced by Na 2 SO 4 deposits in oxygen at 750°C—A new type low-temperature hot corrosion[J]. Oxidation of Metals 40, (1), 1993 (197–211).

    CAS  Article  Google Scholar 

  29. 29.

    J. Fu, Q. Zhou, N. Li, et al., Effects of external stresses on hot corrosion behavior of stainless steel TP347HFG[J]. Corrosion Science 104, 2016 (103–111).

    CAS  Article  Google Scholar 

  30. 30.

    G. Fu, X. Tang, Q. Liu, et al., Hot Corrosion of Fe-Cr Alloys with 75Na2SO4+25NaCl Coating at 1173K[J]. High Temperature Materials & Processes 31, (6), 2012 (717–721).

    CAS  Article  Google Scholar 

  31. 31.

    C. J. Wang and T. T. He, Morphological Development of Subscale Formation in Fe–Cr–(Ni) Alloys with Chloride and Sulfates Coating[J]. Oxidation of Metals 58, (3), 2002 (415–437).

    CAS  Article  Google Scholar 

  32. 32.

    H. J. Lee, H. Kim, S. H. Kim, et al., Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment[J]. Corrosion Science 99, (OCT.), 2015 (227–239).

    CAS  Article  Google Scholar 

  33. 33.

    V. Mannava, A. S. Rao, N. Paulose, et al., Hot corrosion studies on Ni-base superalloy at 650 °C under marine-like environment conditions using three salt mixture (Na2SO4 + NaCl + NaVO3)[J]. Corrosion Science 105, (Apr.), 2016 (109–119).

    CAS  Article  Google Scholar 

  34. 34.

    H. J. Grabke, E. Reese, and M. Spiegel, The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits[J]. Corrosion Science 37, (7), 1995 (1023–1043).

    CAS  Article  Google Scholar 

  35. 35.

    F. Pettit, Hot Corrosion of Metals and Alloys[J]. Oxidation of Metals 76, (1–2), 2011 (1–21).

    CAS  Article  Google Scholar 

  36. 36.

    G. H. Meier, Current Aspects of Deposit-Induced Corrosion[J]. Oxidation of Metals 2021, 2021 (1–41).

    Google Scholar 

  37. 37.

    C. Yu, J. Zhang, and D. J. Young, High temperature corrosion of Fe-Cr-(Mn/Si) alloys in CO2-H2O-SO2 gases[J]. Corrosion Science 112, 2016 (214–225).

    CAS  Article  Google Scholar 

  38. 38.

    L. Romo, J. G. Gonzalez-Rodriguez, J. Porcayo-Calderon, et al., A study on the effect of Co, Cr and Ti on the corrosion of FE40AL intermetallic in molten NaCl-KCl mixture[J]. Intermetallics 67, 2015 (156–165).

    CAS  Article  Google Scholar 

  39. 39.

    J. Fu, N. Li, Q. Zhou, et al., Impacts of Applied Stresses on High Temperature Corrosion Behavior of HR3C in Molten Salt[J]. Oxidation of Metals 83, (3–4), 2015 (317–333).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2016YFC0801904), the Program for New Century Excellent Talents in the University of Ministry of Education of China (NCET-13–0468), and the Fundamental Research Funds for the Central Universities in Xi'an Jiaotong University. In this study, the authors listed at the beginning all did many efforts. Zhuhan Liu completed the experiments and write this paper with the help of Zhiyuan Ning. And Na Li and Mr. Zhou gave us instructions on how to analyze the dates. Taisheng Liu offered the experimental materials as well as some equipment. In the preparation for the revised paper, Zhiyuan Ning gave us many suggestions and help to revise the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Na Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Ning, Z., Zhou, Q. et al. Effects of External Stress on High-Temperature Corrosion Behavior of T92 Ferrite Steel with Na2SO4-K2SO4 Molten Salts. Oxid Met (2021). https://doi.org/10.1007/s11085-021-10084-1

Download citation

Keywords

  • High-temperature corrosion
  • External stress
  • Decomposition of sulfates
  • Dissolution of oxides
  • SEM&XRD