Skip to main content

Research on the Wetting and Corrosion Behavior Between Converter Slag with Different Alkalinity and MgO-C Refractories

Abstract

The wetting and corrosion behavior of slag with different alkalinity and MgO-C refractories were studied through high-temperature wetting experiments. The results showed that as the alkalinity of the slag increased, the final contact angle between the slag and the MgO-C refractory gradually decreased, and the penetration depth of the slag into the refractory gradually decreased. The CaO and SiO2 in the slag penetrated into the MgO-C refractory along the pores or surface cracks formed by carbon oxidation, and reacted with MgO to generate a large amount of low-melting compound (CaO-MgO-SiO2), which accelerated the corrosion of the refractory. As the alkalinity increased, the content of CaO in the slag increased, the viscosity of the slag increased and the fluidity became worse, so the mass transfer and diffusion of molecules or ions in the slag were weakened. In addition, the increase of CaO content reduced the activity of FeO in the slag, which inhibited the interfacial chemical reaction, thereby weakening the wetting effect caused by the reaction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    S. W. Zhang and W. E. Lee, Journal of the European Ceramic Society 21, 2393 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    S. A. Nightingale, G. A. Brooks, and B. J. Monaghan, University of Portsmouth 36, 453 (2005).

    Google Scholar 

  3. 3.

    B. J. Monaghan, S. A. Nightingale, and Q. Dong, Engineering 2, 496 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    A. A. Kazakov, Russian Metall 6, 25 (1997).

    Google Scholar 

  5. 5.

    S. Riaz, K. C. Mills, and K. Bain, Ironmaking & Steelmaking 29, 107 (2013).

    Article  Google Scholar 

  6. 6.

    S. Riaz, Ironmaking & Steelmaking 39, 409 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Q. C. Liu, D. F. Chen, Y. Xu, and J. W. Newkirk, British Corrosion Journal 37, 231 (2013).

    Article  Google Scholar 

  8. 8.

    B. Han, C. Ke, Y. Wei, W. Yan, C. Wang, F. Chen, and N. Li, Ceramics International 41, 10966 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    K. Mukai, Z. Li, and Z. Tao, High Temperature Materials & Processes 20, 255 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    S. Jansson, V. Brabie, and P. Jonsson, Scandinavian Journal of Metallurgy 34, 283 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Y.F. Fan, H.X. Zhao, Y. Wu, S.Q. Li, K. Hou, and Z.F. Yuan, Iron and Steel 48, 35 (2013).

  12. 12.

    P. Shen, L. F. Zhang, Y. Wen, and Y. Wang, Iron and Steel 51, 31 (2016).

    CAS  Google Scholar 

  13. 13.

    S. H. Heo, K. Lee, and Y. Chung, Transactions of Nonferrous Metals Society of China 22, 871 (2012).

    Article  Google Scholar 

  14. 14.

    H. Wang, R. Caballero, and D. Sichen, Journal of the European Ceramic Society 38, 789 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    M. Yang, X. W. Lv, R. Wei, and C. Bai, Metallurgical & Materials Transactions B 49, 2667 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    B. Yu, X. W. Lv, S. L. Xiang, C. G. Bai, and J. Q. Yin, Isij International 55, 1558 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    R. R. Yin, Investigation on Interfacial Reaction between Multicomponent Slag and MgO-C Refractorie, (University of Science and Technology Liaoning, Anshan, 2020).

    Google Scholar 

  18. 18.

    Z. Y. Liu, J. K. Yu, X. Yang, E. D. Jin, and L. Yuan, Materials 11, 883 (2018).

    Article  Google Scholar 

  19. 19.

    X. Yang, Z. J. He, J. K. Yu, Y. Y. Zhang, L. Yuan, and F. X. Mao, Ceramics International 46, 10180 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Tsukaguchi, T. Kato, and S. Watanabe, Bulletin of the Japan Institute of Metals 50, 27 (2011).

    CAS  Google Scholar 

  21. 21.

    K. Mukai, Z. Tao, K. Goto, Z. S. Li, and T. Takashima, Scandinavian Journal of Metallurgy. 31, 68 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    K. C. Mills and B. J. Keene, Metallurgical Reviews 32, 1 (1987).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank team partners from the Research Institute of Mass Energy Optimization and New Technology of Metallurgy for their valuable contribution to this work and preparation of this paper. This work was financially supported by National Natural Science Foundation of China (51874171 and 51974154) and supported by university of science and technology liaoning talents program.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhijun He or Xinmei Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Sheng, H., Yang, X. et al. Research on the Wetting and Corrosion Behavior Between Converter Slag with Different Alkalinity and MgO-C Refractories. Oxid Met (2021). https://doi.org/10.1007/s11085-021-10083-2

Download citation

Keywords

  • Converter slag
  • MgO-C refractory
  • Alkalinity
  • Wetting
  • Corrosion