Skip to main content

Alpha-case Formation in Ti–6Al–4V in a Different Oxidizing Environment and Its Effect on Tensile and Fatigue Crack Growth Behavior


\(\alpha + \beta\) titanium alloy is known for its high strength to low weight ratio, excellent mechanical properties and superior corrosion resistance, which make it a favorable material for aerospace and biomedical applications. However, on exposure to oxygen and nitrogen at elevated temperatures, a hard and brittle \(\alpha\)-layer develops on the titanium alloy surface, which is referred to as ‘\(\alpha\)-casing.’ In the present study, Ti–6Al–4 V was heat treated above the \(\beta\)-transition temperature and cooled at different rates in water, air and furnace to obtain lamellar morphologies of different \(\alpha\)-lath thicknesses. Tensile and compact tension (CT) specimens with three different lamellar morphologies were obtained by heat treatment in such a way that one set (A) had ‘\(\alpha\)-case’ and other set (B) was devoid of such casing. Water quenched (WQ) samples formed a very thick \(\alpha\)-case with numerous micro-cracks compared to the air and furnace cooled samples. On tensile loading, the WQ sample with \(\alpha\)-case failed in fully brittle mode and the ductility of the air-cooled (AC) and furnace cooled (FC) samples with \(\alpha\)-case was reduced significantly. It was also observed that the fatigue crack growth rate (FCGR) increased considerably as the apparent effective crack front area was reduced due to \(\alpha\)-case formation.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 3
Fig. 4
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    R. R. Boyer, An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 213, 1996 (103–114).

    Article  Google Scholar 

  2. 2.

    D. Banerjee and J. C. Williams, Perspectives on titanium science and technology. Acta Mater. 61, 2013 (844–879).

    CAS  Article  Google Scholar 

  3. 3.

    G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater. Sci. Eng. A. 243, 1998 (32–45).

    Article  Google Scholar 

  4. 4.

    Gerd Lütjering and J. C. Williams, Titanium, 2nd edn Springer Berlin Heidelberg; 2007.

  5. 5.

    M. J. Donachie, Titanium - A Technical Guide. ASM Int. 2000.

    Article  Google Scholar 

  6. 6.

    C. Munuera, T. R. Matzelle, N. Kruse, et al., Surface elastic properties of Ti alloys modified for medical implants: a force spectroscopy study. Acta Biomater. 3, 2007 (113–119).

    CAS  Article  Google Scholar 

  7. 7.

    D. Rugg, M. Dixon, and J. Burrows, High-temperature application of titanium alloys in gas turbines. Material life cycle opportunities and threats – an industrial perspective. Mater. High Temp. 33, 2016 (536–541).

    CAS  Article  Google Scholar 

  8. 8.

    T. A. Parthasarathy, W. J. Porter, S. Boone, R. John, and P. Martin, Life prediction under tension of titanium alloys that develop an oxygenated brittle case during use. Scr. Mater. 65, 2011 (420–423).

    CAS  Article  Google Scholar 

  9. 9.

    K. S. Chan, M. Koike, B. W. Johnson, and T. Okabe, Modeling of alpha-case formation and its effects on the mechanical properties of titanium alloy castings. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39, 2008 (171–180).

    Article  Google Scholar 

  10. 10.

    W. J. Boettinger, M. E. Williams, S. R. Coriell, U. R. Kattner, and B. A. Mueller, Alpha case thickness modeling in investment castings. Metall. Mater Trans. B Process Metall. Mater. Process. Sci. 31, 2000 (1419–1427).

    Article  Google Scholar 

  11. 11.

    C. Oskay and M. Haney, Computational modeling of titanium structures subjected to thermo-chemo-mechanical environment. Int. J. Solids Struct. 47, 2010 (3341–3351).

    CAS  Article  Google Scholar 

  12. 12.

    L. Yue, Z. Wang, and L. Li, Material morphological characteristics in laser ablation of alpha case from titanium alloy. Appl. Surf. Sci. 258, 2012 (8065–8071).

    CAS  Article  Google Scholar 

  13. 13.

    G. Z. Chen, D. J. Fray, and T. W. Farthing, Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride. Metall. Mater. Trans. B. 32, 2001 (1041–1052).

    Article  Google Scholar 

  14. 14.

    V. Deshmukh, R. Kadam, and S. S. Joshi, Removal of alpha case on titanium alloy surfaces using chemical milling. Mach. Sci. Technol. 21, 2017 (257–278).

    CAS  Article  Google Scholar 

  15. 15.

    S. L. Semiatin, S. L. Knisley, P. N. Fagin, F. Zhang, and D. R. Barker, Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V. Metall. Mater. Trans. A. 34, 2003 (8–10).

    Article  Google Scholar 

  16. 16.

    A. Zhecheva, W. Sha, S. Malinov, and A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. Coatings Technol. 200, 2005 (2192–2207).

    CAS  Article  Google Scholar 

  17. 17.

    S. L. Semiatin, V. Seetharaman, and I. Weiss, Hot workability of titanium and titanium aluminide alloys—an overview. Mater. Sci. Eng. A. 243, 1998 (1–24).

    Article  Google Scholar 

  18. 18.

    J. L. Cantero, M. M. Tardío, J. A. Canteli, M. Marcos, and M. H. Miguélez, Dry drilling of alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 45, 2005 (1246–1255).

    Article  Google Scholar 

  19. 19.

    A. Rosen and A. Rottem, The effect of high temperature exposure on the creep resistance of Ti-6Al-4V alloy. Mater. Sci. Eng. 22, 1976 (23–29).

    CAS  Article  Google Scholar 

  20. 20.

    D. V. V. Satyanarayana and M. C. Pandey, Effect of heat-treatment environment on the creep behaviour of a titanium alloy. Scr. Metall. Mater. 25, 1991 (2273–2278).

    CAS  Article  Google Scholar 

  21. 21.

    R. W. Evans, R. J. Hull, and B. Wilshire, The effects of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834. J. Mater. Process. Technol. 56, 1996 (492–501).

    Article  Google Scholar 

  22. 22.

    Rugg D. Environmental Behavior of Titanium Alloys - Threats, Mechanisms and Knowledge Gaps. In: Proceedings of the 13th World Conference on Titanium. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2016:1471–1481. doi:

  23. 23.

    Casimir J. Rosa, Oxygen diffusion in alpha and beta titanium in the temperature range of 932° to 1142°C. Metallurgical Trans. 1, 1970 (2517–2522).

    CAS  Google Scholar 

  24. 24.

    E. Dong, W. Yu, Q. Cai, L. Cheng, and J. Shi, High-Temperature Oxidation Kinetics and Behavior of Ti–6Al–4V Alloy. Oxid. Met. 88, 2017 (719–732).

    CAS  Article  Google Scholar 

  25. 25.

    R. Gaddam, B. Sefer, R. Pederson, and M.-L. Antti, Study of alpha-case depth in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V. IOP Conf. Ser. Mater. Sci. Eng. 48, 2013 (012002).

    CAS  Article  Google Scholar 

  26. 26.

    N. Mohite, S. Biradar, J. S. Jha, S. Mishra, and A. Tewari, Development and removal of alpha-case layer from heat treated titanium alloy. ASME 2017.

    Article  Google Scholar 

  27. 27.

    H. R. Ogden, R. I. Jaffee, The effects of carbon, oxygen and nitrogen on the mechanical properties of titanium and titanium alloys. Titan. Metall. Lab 81–87 (2012)

  28. 28.

    Voort G. Vander, Metallographic Preparation of Titanium and its Alloys. Buehler Tech-Notes. 3, 1999 (1–5).

    Google Scholar 

  29. 29.

    S. C. Wang, M. Aindow, and M. J. Starink, Effect of self-accommodation on α/α boundary populations in pure titanium. Acta Mater. 51, 2003 (2485–2503).

    CAS  Article  Google Scholar 

  30. 30.

    J. S. Jha, B. Jayabalan, S. P. Toppo, et al., Hot deformation behaviour of Ti-6Al-4V alloy with a transformed microstructure : a multimodal characterisation. Philos. Mag. 99, 2019 (1429–1459).

    CAS  Article  Google Scholar 

  31. 31.

    J. S. Jha, S. P. Toppo, R. Singh, A. Tewari, and S. K. Mishra, Flow stress constitutive relationship between lamellar and equiaxed microstructure during hot deformation of Ti-6Al-4V. J. Mater. Process. Technol. 270, 2019 (216–227).

    CAS  Article  Google Scholar 

  32. 32.

    D. M. Bowden and E. A. Starke, The effect of microstructure and deformation behavior on the hot ductility of Ti-6Al-2Nb-1Ta-0.8Mo. Metall. Trans. A. 15, 1984 (1687–1698).

    Article  Google Scholar 

  33. 33.

    Z. Zheng, S. Waheed, D. S. Balint, and F. P. E. Dunne, Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity. Int. J. Plast. 104, 2018 (23–38).

    CAS  Article  Google Scholar 

  34. 34.

    Vydehi Arun Joshi. Titanium Alloys: An Atlas of Structures and Fracture Features. 2006.

  35. 35.

    E. Hershko, N. Mandelker, G. Gheorghiu, H. Sheinkopf, I. Cohen, and O. Levy, Assessment of fatigue striation counting accuracy using high resolution scanning electron microscope. Eng. Fail. Anal. 15, 2008 (20–27).

    CAS  Article  Google Scholar 

  36. 36.

    J. H. Bulloch and A. G. Callagy, A detailed study of the relationship between fatigue crack growth rate and striation spacing in a range of low alloy ferritic steels. Eng. Fail. Anal. 17, 2010 (168–178).

    CAS  Article  Google Scholar 

  37. 37.

    W. C. Connors, Fatigue striation spacing analysis. Mater. Charact. 33, 1994 (245–253).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sushil K. Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seth, P., Jha, J.S., Alankar, A. et al. Alpha-case Formation in Ti–6Al–4V in a Different Oxidizing Environment and Its Effect on Tensile and Fatigue Crack Growth Behavior. Oxid Met (2021).

Download citation


  • \(\alpha\)-case
  • Heat treatment
  • Tensile test
  • FCGR test
  • Lamellar microstructure
  • Fractography