Skip to main content

High-Temperature Oxidation Behavior of Ti6242S Ti-based Alloy

Abstract

The aircraft industry is always looking for improved efficiency through higher in-service engine temperatures and lighter structures. Titanium-based alloys are good candidates for such applications because of their high specific strength. However, when exposed to high-temperature oxidizing environments, a large amount of dissolved oxygen can be found in such alloys beneath the growing oxide scale, possibly leading to embrittlement. Consequently, evaluating the oxidation resistance of these alloys is essential. With this aim, long-term oxidation tests were carried out on Ti6242S alloy between 500 and 650 °C to study the effect of temperature, surface preparation and microstructure on oxide scale and oxygen dissolution. While increasing the temperature from 560 to 625 °C led to accelerated oxidation kinetics, surface preparation had no noticeable effect on mass variations and oxygen diffusion profiles. Regarding microstructure, when comparing Ti6242S samples having similar α-phase fraction but very different microstructures (fineness and morphology), there wasn’t any significant effect found on mass change and oxygen diffusion after 1 kh at 650 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    J. L. Murray and H. A. Wriedt, Bulletin of Alloy Phase Diagrams 8, 148–165 (1987).

    CAS  Article  Google Scholar 

  2. 2.

    W. L. Finlay and J. A. Snyder, Journal of Metals 188, 227–286 (1950).

    Google Scholar 

  3. 3.

    H. Fukai, et al., Isij International 45, 133–141 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    A. Casadebaigt, D. Monceau, and J. Hugues, MATEC Web of Conferences, The 14th World Conference on Titanium (Ti 2019), Vol. 321, 03006 (2020).

  5. 5.

    A. Vande Put et al., MATEC Web of Conferences, The 14th World Conference on Titanium (Ti 2019), Vol. 321, 04011 (2020).

  6. 6.

    B. Champin, et al., Journal of the Less Common Metals 69, 163–183 (1980).

    CAS  Article  Google Scholar 

  7. 7.

    A. Casadebaigt, J. Hugues, and D. Monceau, Oxidation of Metals 90, 633–648 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    M. Wen, et al., Colloids and Surfaces B-Biointerfaces 116, 658–665 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    A. Kanjer, et al., Oxidation of Metals 88, 383–395 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    A. Kanjer, et al., Surface and Coatings Technology 343, 93–100 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    M. Thomas, et al., Acta Materialia 60, 5040–5048 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    L. Lavisse et al., Surface & Coatings Technology 403, 126368 (2020).

  13. 13.

    K. Calvert and Y. Kosaka, Evaluation of titanium alloys after high temperature air exposure, Proceedings of 13th World Conference on Titanium, pp. 1605–1612 (2016).

  14. 14.

    M. Berthaud, et al., Corrosion Science 164, 108049 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    R. Gaddam, et al., Materials Characterization 99, 166–174 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    J. W. Elmer, et al., Materials Science and Engineering: A 391, 104–113 (2005).

    Article  Google Scholar 

  17. 17.

    A. Casadebaigt, J. Hugues, and D. Monceau, Corrosion Science 175, 108875 (2020).

    CAS  Article  Google Scholar 

  18. 18.

    K. V. Sai Srinadh and V. Singh, Bulletin of Materials Science 27, 347–354 (2004).

    Article  Google Scholar 

  19. 19.

    C. Leyens, et al., Materials Science and Technology 12, 213–218 (1996).

    Article  Google Scholar 

  20. 20.

    F. Pitt and M. Ramulu, Journal of Materials Engineering and Performance 13, 727–734 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    D. P. Satko, et al., Acta Materialia 107, 377–389 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    C. J. Rosa, Metallurgical Transactions 1, 2517–2522 (1970).

    CAS  Google Scholar 

  23. 23.

    T. Sugahara et al., The Effect of Widmanstatten and Equiaxed Microstructures of Ti-6Al-4V on the Oxidation Rate and Creep Behavior, Materials Science Forum, Vol. 636–637, pp. 657–662 (2010).

  24. 24.

    N. Vaché, et al., Corrosion Science 178, 109041 (2021).

    Article  Google Scholar 

  25. 25.

    C. Ciszak, et al., Corrosion Science 176, 109005 (2020).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study on the effect of microstructure was supported by the French National Research Agency through the project ANR DUSTI in partnership with Airbus, Airbus Group Innovations, Aubert&Duval, Liebherr Toulouse Aerospace, the Institut Pprime, the Institut Jean Lamour and the CIRIMAT Laboratory. The contributions of Moukrane Dehmas through fruitful discussions are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aurélie Vande Put.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vande Put, A., Dupressoire, C., Thouron, C. et al. High-Temperature Oxidation Behavior of Ti6242S Ti-based Alloy. Oxid Met 96, 373–384 (2021). https://doi.org/10.1007/s11085-021-10073-4

Download citation

Keywords

  • High-temperature oxidation
  • Titanium-based alloy
  • Oxygen dissolution