Skip to main content

Effect of Water Vapor on Lifetime of 625 and 120 Foils During Oxidation Between 650 and 800 °C

Abstract

The oxidation behavior of alloy 625 and 120 foils was studied at 650, 700 and 800 \(^\circ\)C in dry air and flowing air + 10% H\(_2\)O up to 10,000 h (alloy 625) or 30,000 h (alloy 120). The effect of water vapor on Cr loss was investigated. Manganese and iron in the 120 foil induced faster Cr depletion in the foil and breakdown of the Cr\(_2\)O\(_3\) scale into Fe and Cr-rich oxide compared to the alloy 625 foil. In the latter case, the presence of Nb led to the formation of Nb and Cr-rich oxide after breakdown of the Cr\(_2\)O\(_3\) scale. Simultaneous Cr loss due to oxidation and volatilization of the Cr\(_2\)O\(_3\) oxide scale was predicted and compared to experimental Cr loss measurements for exposures up to 30,000 h.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    C. F. McDonald, Applied Thermal Engineering 23, 1463 (2003). https://doi.org/10.1016/S1359-4311(03)00083-8.

  2. 2.

    P. Maziasz, R. Swindeman, J. Shingledecker, K. More, B. Pint, E. Lara-Curzio and N. Evans, Book- Institute of Materials 800, 1057 (2003).

  3. 3.

    B. A. Pint, Journal of Engineering for Gas Turbines and Power 128, 370 (2004). https://doi.org/10.1115/1.2056531.

  4. 4.

    J. M. Rakowski, C. P. Stinner, M. Lipschutz and J. P. Montague, The use and performance of wrought 625 alloy in primary surface recuperators for gas turbine engines, in: Proceedings of Superalloys 718, p. 625 (2005).

  5. 5.

    M. D. Bender and R. C. Klug, Comparison of Ni-based 625 alloy and ATI 20-25+Nb\(^{\rm TM}\) stainless steel foils after long-term exposure to gas turbine engine exhaust, in: Proceedings of the ASME Turbo Expo, vol. GT2014-25334 (2014). https://doi.org/10.1115/GT2014-25334.

  6. 6.

    J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006). https://doi.org/10.1016/j.corsci.2006.02.002.

  7. 7.

    W. J. Quadakkers, J. Zurek and M. Hänsel, JOM 61, 44 (2009). https://doi.org/10.1007/s11837-009-0102-y.

  8. 8.

    H. Asteman, J. E. Svensson, L. G. Johansson and M. Norell, Oxidation of Metals 52, 95 (1999). https://doi.org/10.1023/a:1018875024306.

  9. 9.

    R. Peraldi and B. A. Pint, Oxidation of Metals 61, 463 (2004).

  10. 10.

    B. A. Pint, The effect of water vapor on Cr depletion in advanced recuperator alloys, in: Turbo Expo: Power for Land, Sea, and Air, vol. 46997, p. 927 (2005).

  11. 11.

    D. J. Young and B. A. Pint, Oxidation of Metals 66 137 (2006). https://doi.org/10.1007/s11085-006-9030-1.

  12. 12.

    B. A. Pint, K. L. More, R. M. Trejo and E. Lara-Curzio, Journal of Engineering for Gas Turbines and Power 130. https://doi.org/10.1115/GT2006-90194.

  13. 13.

    T. Sand, C. Geers, Y. Cao, J. E. Svensson and L. G. Johansson, Oxidation of Metals 92, 259 (2019). https://doi.org/10.1007/s11085-019-09935-9.

  14. 14.

    P. Huczkowski, W. Lehnert, H. H. Angermann, A. Chyrkin, R. Pillai, D. Grüner, E. Hejrani and W. J. Quadakkers, Materials and Corrosion 68, 159 (2017). https://doi.org/10.1002/maco.201608831.

  15. 15.

    R. Pillai, S. Dryepondt and B. A. Pint, High temperature oxidation lifetime modeling of thin-walled components, in: ASME Turbo Expo Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy, Phoenix, Arizona, USA, June 17–21, 2019, p. 1 (2019).

  16. 16.

    C. Gindorf, L. Singheiser and K. Hilpert, Journal of Physics and Chemistry of Solids 66, 384 (2005). https://doi.org/10.1016/j.jpcs.2004.06.092.

  17. 17.

    E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky and M. D. Allendorf, Journal of Physical Chemistry A 111, 1971 (2007). https://doi.org/10.1021/jp0647380.

  18. 18.

    B. A. Pint, K. L. More, R. M. Trejo and E. Lara-Curzio, Journal of Engineering for Gas Turbines and Power-Transactions of the ASME 130, 271 (2008). https://doi.org/10.1115/1.2436565.

  19. 19.

    C. Tedmon, Journal of the Electrochemical Society 113, 3 (1966).

  20. 20.

    G. R. Holcomb, Oxidation of Metals 69, 163 (2008). https://doi.org/10.1007/s11085-008-9091-4.

  21. 21.

    G. R. Holcomb, Journal of the Electrochemical Society 156, C292 (2009). https://doi.org/10.1149/1.3155442.

  22. 22.

    B. B. Ebbinghaus, Combustion and Flame 93, 119 (1993). https://doi.org/10.1016/0010-2180(93)90087-J.

  23. 23.

    V. P. Deodeshmukh, Oxidation of Metals 79, 567 (2013). https://doi.org/10.1007/s11085-012-9343-1.

  24. 24.

    V. P. Deodeshmukh, Oxidation of Metals 79, 579 (2013). https://doi.org/10.1007/s11085-012-9344-0.

  25. 25.

    C. A. Barrett and A. Presler, COREST: A FORTRAN computer program to analyze paralinear oxidation behavior and its application to chromic oxide forming alloys, Report NASA-TN-D-8132, E-8432, NASA Lewis Research Center; Cleveland, OH, United States (1976).

  26. 26.

    MATLAB, R2019b, The MathWorks Inc., Natick, Massachusetts (2019).

  27. 27.

    J. Zurek, D. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak, and W. J. Quadakkers, Materials Science and Engineering: A 477, 259 (2008). https://doi.org/10.1016/j.msea.2007.05.035.

  28. 28.

    X. Ledoux, S. Mathieu, M. Vilasi, Y. Wouters, P. Del-Gallo and M. Wagner, Oxidation of Metals 80, 25 (2013). https://doi.org/10.1007/s11085-013-9367-1.

  29. 29.

    A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 75, 143 (2011). https://doi.org/10.1007/s11085-010-9225-3.

  30. 30.

    N. Ramenatte, A. Vernouillet, S. Mathieu, A. Vande Put, M. Vilasi and D. Monceau, Corrosion Science 164, 108347 (2020). https://doi.org/10.1016/j.corsci.2019.108347. https://www.sciencedirect.com/science/article/pii/S0010938X19314556.

  31. 31.

    J. Colas, L. Charpentier and M. Balat-Pichelin, Oxidation of Metals 93, 355 (2020). doi: 10.1007/s11085-020-09959-6.

    CAS  Article  Google Scholar 

  32. 32.

    H. Buscail, R. Rolland, C. Issartel, F. Rabaste, F. Riffard, L. Aranda and M. Vilasi, Journal of Materials Science 46, 5903 (2011). doi: 10.1007/s10853-011-5544-2.

    CAS  Article  Google Scholar 

  33. 33.

    P. J. Maziasz, B. A. Pint, J. P. Shingledecker, N. D. Evans, Y. Yamamoto, K. L. More and E. Lara-Curzio, International Journal of Hydrogen Energy 32, 3622 (2007). doi: 10.1016/j.ijhydene.2006.08.018.

    CAS  Article  Google Scholar 

  34. 34.

    P. J. Maziasz, J. P. Shingledecker, B. A. Pint, N. D. Evans, Y. Yamamoto, K. More and E. Lara-Curzio, Journal of Turbomachinery-Transactions of the ASME 128, 814 (2006).

  35. 35.

    M. D. Mathew, P. Parameswaran and K. Bhanu Sankara Rao, Materials Characterization 59, 508 (2008). https://doi.org/10.1016/j.matchar.2007.03.007.

  36. 36.

    J. E. Croll and G. R. Wallwork, Oxidation of Metals 1, 55 (1969). https://doi.org/10.1007/BF00609924.

  37. 37.

    R. Pillai, H. Ackermann and K. Lucka, Corrosion Science 69, 181 (2013). https://doi.org/10.1016/j.corsci.2012.11.040.

  38. 38.

    R. Duan, A. Jalowicka, K. Unocic, B. A. Pint, P. Huczkowski, A. Chyrkin, D. Grüner, R. Pillai and W. J. Quadakkers, Oxidation of Metals 87, 11 (2017). https://doi.org/10.1007/s11085-016-9653-9.

  39. 39.

    B. Pint, S. Dryepondt, A. Rouaix-Vande Put and Y. Zhang, Journal of the Minerals Metals and Materials Society (JOM) 64. https://doi.org/10.1007/s11837-012-0474-2.

  40. 40.

    B. A. Pint, Addressing the Role of Water Vapor on Long-term Stainless Steel Oxidation Behavior. Oxidation of Metals (in Press).

  41. 41.

    W. M. Pragnell and H. E. Evans, Oxidation of Metals 66, 209 (2006). https://doi.org/10.1007/s11085-006-9039-5.

  42. 42.

    I. Wright, R. Peraldi and B. Pint, Materials Science Forum - MATER SCI FORUM 461–464, 579 (2004). https://doi.org/10.4028/www.scientific.net/MSF.461-464.579.

  43. 43.

    R. Sachitanand, J. E. Svensson and J. Froitzheim, Oxidation of Metals 84, 241 (2015). https://doi.org/10.1007/s11085-015-9552-5.

  44. 44.

    H. E. Evans, D. A. Hilton, R. A. Holm and S. J. Webster, Oxidation of Metals 14, 235 (1980). https://doi.org/10.1007/BF00604566.

  45. 45.

    R. C. Lobb and H. E. Evans, Corrosion Science 24, 385 (1984). https://doi.org/10.1016/0010-938X(84)90065-9.

  46. 46.

    T. Perez, L. Latu-Romain, R. Podor, J. Lautru, Y. Parsa, S. Mathieu, M. Vilasi and Y. Wouters, Oxidation of Metals 89, 781 (2017).

  47. 47.

    M. Romedenne, R. Pillai, M. Kirka and S. Dryepondt, Corrosion Science 171, 108647 (2020). https://doi.org/10.1016/j.corsci.2020.108647.

  48. 48.

    M. Stanislowski, J. Froitzheim, L. Niewolak, W. J. Quadakkers, K. Hilpert, T. Markus and L. Singheiser, Journal of Power Sources 164, 578 (2007).

  49. 49.

    G. R. Holcomb and D. E. Alman, Journal of Materials Engineering and Performance 15, 394 (2006). https://doi.org/10.1361/105994906X117170.

  50. 50.

    J. E. Croll and G. R. Wallwork, Oxidation of Metals 4, 121 (1972). https://doi.org/10.1007/Bf00613088.

  51. 51.

    A. Stenzel, D. Fahsing, M. Schutze and M. C. Galetz, Materials and Corrosion-Werkstoffe Und Korrosion 70, 1426 (2019). https://doi.org/10.1002/maco.201810655.

  52. 52.

    D. L. Douglass and J. S. Armijo, Oxidation of Metals 2, 207 (1970). https://doi.org/10.1007/BF00603657.

Download references

Acknowledgements

The author would like to thank G. W. Garner, M. S. Stephens, T. Lowe, V. Cox at ORNL for their assistance with the experimental work and P. F. Tortorelli and M. Brady for their valuable comments on the manuscript. This research was sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Combined Heat and Power Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Romedenne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romedenne, M., Pillai, R., Dryepondt, S. et al. Effect of Water Vapor on Lifetime of 625 and 120 Foils During Oxidation Between 650 and 800 °C. Oxid Met (2021). https://doi.org/10.1007/s11085-021-10069-0

Download citation

Keywords

  • Foil oxidation
  • Lifetime
  • Modeling
  • Water vapor
  • Microturbine