Skip to main content

Effectiveness of SiO2/TiO2/Al2O3-Based/TiO2 Coating for Suppressing Circumferential Cracking in Boiler Tubes at Thermal Power Plants

Abstract

In thermal power generation equipment, circumferential cracking in boiler tubes due to thermal cycling is a problem. Circumferential cracks form in the water-wall tube where sulfide corrosion occurs and in superheater and reheater tubes where high-temperature oxidation occurs. The main cause of the crack formations is thermal cycling, but sulfide corrosion and high-temperature oxidation also promote crack generation and accelerate crack progression. Therefore, preventing sulfide corrosion and/or high-temperature oxidation is one strategy for suppressing circumferential cracking. The authors previously developed a SiO2/TiO2/Al2O3-based/TiO2 coating for preventing sulfide corrosion and high-temperature oxidation on boiler tubes. In this work, to confirm the robustness and durability of the coating against circumferential cracking, laboratory experiments and exposure tests in actual power plants were performed. When applied to circumferentially cracked boiler tubes, the coating did not crack and suppressed growth of existing circumferential crack in comparison with an uncoated part.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    K. Nakagawa, I. Kajigaya, M. Tanaka, and S. Ohki, The Thermal and nuclear. 48, 1997 (508).

    Google Scholar 

  2. 2.

    S. Cardoso and A. Facchiano, Proceedings of EPRI International Conference on Corrosion in Power Plants, San Diego, CA, 4–2 - 4–12. (2015).

  3. 3.

    M. Morinaga, S. Najima, N. Wakabayashi and H. Shirai, Proc. 7th International Symposium on Coal Combustion, Harbin, China, 736–741 (2012).

  4. 4.

    S. Najima, M. Morinaga, and S. Hayashi, Oxid Met. 85, 2016 (283).

    CAS  Article  Google Scholar 

  5. 5.

    S. Najima, M. Morinaga, and S. Hayashi, Oxid Met. 84, 2015 (633).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Wang, X. Wang, M. Wang, and H. Tan, Energy & Fuels. 34, 2020 (13849).

    CAS  Article  Google Scholar 

  7. 7.

    S. Kyo, M. Nakamori, K. Kurokawa, and T. Narita, Zairyou-to-kankyou. 59, 2010 (456).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Kawahara, Oxid Met. 85, 2016 (127).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Kawahara, Zairyou-to-kankyou. 55, 2006 (172).

    CAS  Article  Google Scholar 

  10. 10.

    N. Lee, S. Kim, B. Choe, K. Yoon, and D. Kwon, Engineering Failure Analysis. 16, 2009 (2031).

    CAS  Article  Google Scholar 

  11. 11.

    M. Kawase and M. Morinaga, CRIEPI Report, M04 (2015).

  12. 12.

    M. Kawase, A. Ido, and M. Morinaga, Applied Thermal Engineering 153, 2019 (242).

    CAS  Article  Google Scholar 

  13. 13.

    N. B. Pilling and R. E. Bedworth, J. Inst. Met. 29, 1923 (529).

    Google Scholar 

  14. 14.

    P. Hancock and R. C. Hurst, Advances in Corrosion Science and Technology, (Springer, Boston, 1974), pp. 1–84.

    Book  Google Scholar 

  15. 15.

    P.K. Datta, H.L. Du, J.S. Burnell-Gray and R. Ricker. CORROSION OF INTERMETALLICS. ASM Handbook Volume 13B Corrosion: Materials. 490–512 (2005).

  16. 16.

    K. Komai, Tetsu-to-Hagane. 69, 1983 (728).

    CAS  Article  Google Scholar 

  17. 17.

    T. Takahashi, K. Koyada, M. Uchiyama, Y. Kouda, Y. Horikawa, and T. Gouda, Thermal and Nuclear Power 42, 1991 (1704).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Makoto Kawase.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawase, M., Ido, A. & Morinaga, M. Effectiveness of SiO2/TiO2/Al2O3-Based/TiO2 Coating for Suppressing Circumferential Cracking in Boiler Tubes at Thermal Power Plants. Oxid Met 96, 361–372 (2021). https://doi.org/10.1007/s11085-021-10065-4

Download citation

Keywords

  • Boiler tube
  • Circumferential crack
  • Sulfide corrosion
  • High-temperature oxidation
  • Liquid spray coating