Skip to main content

Impact of Water Vapor on the High Temperature Oxidation of Wrought and Selective Laser Melted (SLM) AISI 316L


This work focuses on the high temperature oxidation of AISI 316L produced by Selective Laser Melting (SLM) and by conventional metallurgy (wrought), used as reference. Oxidation tests were performed at 900 °C for up to 3000 h in laboratory air and up to 1000 h in wet air (air-10 vol.% H2O). X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectrometry were used for the characterization of the corrosion products. SLM specimens exhibit a better oxidation resistance in both atmospheres. SLM samples exhibit parabolic behavior \((k_{p} = 1.7~.10^{{ - 13}} g^{2} .cm^{{ - 4}} .s^{{ - 1}} )\) throughout 3000 h in air while wrought \((k_{p} = 1.4~.10^{{ - 13}} g^{2} .cm^{{ - 4}} .s^{{ - 1}} )\) samples undergo breakaway oxidation after 1000 h of exposure. These observations are emphasized in wet air, since wrought coupons present catastrophic oxidation after 100 h, while parabolic behavior \((k_{p} = 7.0~.10^{{ - 14}} g^{2} .cm^{{ - 4}} .s^{{ - 1}} )\) is observed all along the 1000 h exposure for SLM samples. The better behavior observed for SLM samples can be explained by the growth of a dense and continuous Cr2O3 protective layer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

Not applicable.

Code Availability

Not applicable.


  1. 1.

    F. Bartolomeu, M. Buciumeanu, E. Pinto, et al., Additive Manufacturing 16, 2017 (81–8).

    CAS  Article  Google Scholar 

  2. 2.

    W. M. Tucho, V. H. Lysne, H. Austbø, A. Sjolyst-Kverneland, and V. Hansen, Journal of Alloys and Compounds 740, 2018 (910–925).

    CAS  Article  Google Scholar 

  3. 3.

    Y. M. Wang, T. Voisin, J. T. McKeown, et al., Nature Materials 17, 2018 (63–71).

    CAS  Article  Google Scholar 

  4. 4.

    K. Saeidi, X. Gao, Y. Zhong, and Z. J. Shen, Materials Science and Engineering: A 625, 2015 (221–229).

    CAS  Article  Google Scholar 

  5. 5.

    W. E. Frazier, Journal of Materials Engineering and Performance 23, 2014 (1917–1928).

    CAS  Article  Google Scholar 

  6. 6.

    R. Casati, J. Lemke, and M. Vedani, Journal of Materials Science & Technology 32, 2016 (738–744).

    CAS  Article  Google Scholar 

  7. 7.

    H. Buscail, R. Rolland, and S. Perrier, Annales de Chimie Science Des Matériaux 39, 2015 (107–114).

    Article  Google Scholar 

  8. 8.

    A. V. C. Sobral, C. V. Franco, M. P. Hierro, F. J. Pérez, and W. Ristow Jr., Materials and Corrosion 51, 2000 (791–796).

    CAS  Article  Google Scholar 

  9. 9.

    C. Siri, I. Popa, A. Vion, C. Langlade, and S. Chevalier, Oxidation of Metals 94, 2020 (527–548).

    Article  Google Scholar 

  10. 10.

    S. Jianian, Z. Longjiang, and L. Tiefan, Oxidation of Metals 48, 1997 (347–356).

    Article  Google Scholar 

  11. 11.

    S. R. J. Saunders, M. Monteiro, and F. Rizzo, Progress in Materials Science 53, 2008 (775–837).

    CAS  Article  Google Scholar 

  12. 12.

    S. Chevalier and J. Favergeon, Influence of Water Vapor on High-Temperature Oxidation of Chromia-Forming Materials, French Activity on High Temperature Corrosion in Water Vapor, Trans Tech Publications, Switzerland, 2014.

  13. 13.

    S.-Y. Cheng, S.-L. Kuan, and W.-T. Tsai, Corrosion Science 48, 2006 (634–649).

    CAS  Article  Google Scholar 

  14. 14.

    H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Oxidation of Metals 52, 1999 (379–402).

    CAS  Article  Google Scholar 

  15. 15.

    H. Asteman, Oxidation of Metals 57, 2002 (193–215).

    CAS  Article  Google Scholar 

  16. 16.

    C. T. Fujii and R. A. Meussner, Journal of The Electrochemical Society 111, 1964 (1215).

    CAS  Article  Google Scholar 

  17. 17.

    M. Ardigo, I. Popa, S. Chevalier, S. Weber, O. Heintz, and M. Vilasi, Oxidation of Metals 79, 2012.

  18. 18.

    C. Ciszak, I. Popa, J.-M. Brossard, D. Monceau, and S. Chevalier, Corrosion Science 110, 2016 (91–104).

    CAS  Article  Google Scholar 

  19. 19.

    C. Wagner, Journal of The Electrochemical Society 99, 1952 (369–380).

    CAS  Article  Google Scholar 

  20. 20.

    N. Otsuka, Y. Shida, and H. Fujikawa, Oxidation of Metals 32, 1989 (13–45).

    CAS  Article  Google Scholar 

  21. 21.

    X. Peng, J. Yan, Y. Zhou, and F. Wang, Acta Materialia 53, 2005 (5079–5088).

    CAS  Article  Google Scholar 

  22. 22.

    E. J. Opila, N. S. Jacobson, D. L. Myers, and E. H. Copland, Journal of The Minerals, Metals & Materials Society 58, 2006 (22–28).

  23. 23.

    E. J. Opila, Materials Science Forum 461–464, 2004 (765–774).

    Article  Google Scholar 

  24. 24.

    A. Galerie, Y. Wouters, and M. Caillet, Materials Science Forum 369–372, 2001 (231–238).

    Article  Google Scholar 

  25. 25.

    A. S. Khanna and P. Kofstad, Proceeding of the 11th International Corrosion Congress: Innovation and Technology Transfer for Corrosion Control and the 159th Event of the European Federation of Corrosion, Florence, Italia, 1990.

  26. 26.

    A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J.-P. Petit, and L. Antoni, Materials at High Temperatures 22, 2005 (105–112).

    CAS  Article  Google Scholar 

Download references


The authors would like to thank Maxime GUERINEAU, Frédéric HERBST and Nicolas GEOFFROY from ICB laboratory for their technical support for SEM and XRD analyses.



Author information




CS: materials preparation, oxidation and characterization experiments, data collection, analysis and interpretation, original draft writing. IP: conceptualization, methodology, data interpretation, original draft reviewing, supervision, project administration, funding acquisition. AV: additively manufactured materials supply. CL: additively manufactured materials supply. SC: conceptualization, methodology, data interpretation, original draft reviewing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Corentin Siri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siri, C., Popa, I., Vion, A. et al. Impact of Water Vapor on the High Temperature Oxidation of Wrought and Selective Laser Melted (SLM) AISI 316L. Oxid Met 96, 347–359 (2021).

Download citation


  • AISI 316L
  • Additive manufacturing
  • SLM
  • High temperature oxidation
  • Wet air
  • Chromia