Skip to main content

Pre-Oxidation to Improve Liquid Metal Compatibility


Liquid metals represent an aggressive environment where selective degradation can attack structural alloys. Pre-oxidizing structural alloys, particularly those able to form alumina scales, have shown promise for Sn, Pb and Pb–Li concepts for fusion and fission applications. For Pb at 700 °C, a dramatic reduction in mass loss was observed for an alumina-forming austenitic (AFA) steel after pre-oxidation. Likewise, a ferritic FeCrAlMo alloy showed better compatibility in static Sn at 400–500 °C and flowing PbLi when pre-oxidized at 1000 °C to form α-Al2O3. Recent experiments with flowing PbLi at 675–700 °C has shown significant degradation suggesting that alumina-forming alloys are limited to ~ 650 °C in this environment. While the concept is promising, most experiments have been relatively short-term and long-term degradation mechanisms need to be evaluated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    S. Malang and R. Mattas, Fusion Engineering & Design. 27, 399 (1995).

    CAS  Article  Google Scholar 

  2. 2.

    R. G. Ballinger and J. Lim, Nuclear Technology. 147, 418 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    D. Frazer, E. Stergar, C. Cionea, P. Hosemann, Energy Procedia. 49, 627 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    D. C. Vreeland, E. E. Hoffman and W. D. Manly, Nucleonics 11 (11), 36 (1953).

    CAS  Google Scholar 

  5. 5.

    J. H. DeVan, Journal of Nuclear Materials. 85-86, 249 (1979).

    Article  Google Scholar 

  6. 6.

    P. F. Tortorelli, Journal of Nuclear Materials. 191-194, 965 (1992).

    Article  Google Scholar 

  7. 7.

    J. Konys, W. Krauss, Z. Voss and O. Wedemeyer, Journal of Nuclear Materials. 367-370, 1144 (2007).

    Article  Google Scholar 

  8. 8.

    B. A. Pint, L. R. Walker and K. A. Unocic, Materials at High Temperature. 29, 129 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    J. Ejenstam, P. Szakalos, Journal of Nuclear Materials. 461, 164 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    K. A. Unocic and B. A. Pint, Journal of Nuclear Materials. 455, 330 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    S. J. Pawel, Fusion Science and Technology. 61:1T, 369 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    S. J. Pawel and K. A. Unocic, Journal of Nuclear Materials. 492, 41 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    J. Jun, K. A. Unocic, M. J. Lance, H. M. Meyer and B. A. Pint, Journal of Nuclear Materials. 528, 151847 (2020).

    CAS  Article  Google Scholar 

  14. 14.

    J. R. Weeks, Nuclear Engineering Design. 15, 363 (1971).

    CAS  Article  Google Scholar 

  15. 15.

    Y. Yamamoto, M. P. Brady, Z. P. Lu, P. J. Maziasz, C. T. Liu, B. A. Pint, K. L. More, H. M. Meyer and E. A. Payzant, Science. 316, 433-436 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Yamamoto, M. L. Santella, C. T. Liu, N. D. Evans, P. J. Maziasz and M. P. Brady, Materials Science and Engineering A, 524, 176 (2009).

    Article  Google Scholar 

  17. 17.

    M. P. Brady, J. Magee, Y. Yamamoto, D. Helmick, L. Wang, Materials Science and Engineering A. 590, 101 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Y. Yamamoto, B. A. Pint, K. A. Terrani, K. G. Field, Y. Yang and L.L. Snead, Journal of Nuclear Materials. 467, 703 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    A. Weisenburger, A. Jianu, S. Doyle, M. Bruns, R. Fetzer, A. Heinzel, M. DelGiacco, W. An, G. Müller, Journal of Nuclear Materials. 437, 282 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    B. A. Pint, Y.-F. Su, J. Jun, M. P. Brady, Y. Yamamoto and M. R. Ickes, ORNL report TM-2021/2025, Oak Ridge, TN (2021).

  21. 21.

    O. K. Chopra, P. F. Tortorelli, Journal of Nuclear Materials. 123, 1201 (1984).

    CAS  Article  Google Scholar 

  22. 22.

    M. Kondo, M. Ishii and T. Muroga, Fusion Engineering and Design. 98–99, 2003 (2015).

    Article  Google Scholar 

  23. 23.

    S. J. Zinkle and N. M. Ghoniem, Fusion Engineering and Design. 51-52, 55 (2000).

    Article  Google Scholar 

  24. 24.

    H. Sakasegawa, H. Tanigawa, S. Kano, H. Abe, Fusion Engineering and Design. 98-99, 2068 (2015).

    Article  Google Scholar 

  25. 25.

    B. A. Pint and K. L. More, Journal of Nuclear Materials. 376, 108 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    M. Kondo, B. A. Pint, J. Jun, N. Russell, J. McDuffee, M. Akiyoshi, T. Tanaka, N. Oono, J. Miyazawa, J. W. Geringer, Y. Kato, Y. Hatano, Plasma and Fusion Research, 16 2405040 (2021).

    Article  Google Scholar 

  27. 27.

    R. J. Lauf and J. H. DeVan, Journal of the Electrochemical Society. 139, 2087 (1992).

    CAS  Article  Google Scholar 

  28. 28.

    B. A. Pint, P. F. Tortorelli, A. Jankowski, J. Hayes, T. Muroga, A. Suzuki, O. I. Yeliseyeva and V. M. Chernov, Journal of Nuclear Materials. 329-333, 119 (2004).

    Article  Google Scholar 

  29. 29.

    P. Hubberstey, Journal of Nuclear Materials. 247, 208 (1997).

    CAS  Article  Google Scholar 

  30. 30.

    M. Abdou, D. Sze, C. Wong, M. Sawan, A. Ying, N. B. Morley and S. Malang, Fusion Science & Technology. 47, 475 (2005).

    CAS  Article  Google Scholar 

  31. 31.

    P. Hubberstey, T. Sample and A. Terlain, Fusion Technology. 28, 1194 (1995).

    CAS  Article  Google Scholar 

  32. 32.

    B. A. Pint, S. Dryepondt, K. A. Unocic and D. T. Hoelzer, JOM. 66, 2458 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    W. Krauss, J. Konys, S.-E. Wulf, Journal of Nuclear Materials. 455, 522 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    S.-E. Wulf, W. Krauss, J. Konys, Nuclear Materials and Energy. 16, 158 (2018).

    Article  Google Scholar 

  35. 35.

    B. A. Pint, J. Jun and M. Romedenne, Fusion Engineering and Design. 166, 112389 (2021).

    CAS  Article  Google Scholar 

  36. 36.

    B. A. Pint, J. Jun, E. Cakmak, D. J. Sprouster, N. Olynik and L. L. Snead, “Compatibility of FeCrAlMo in Flowing Pb-Li at 600°-700°C,” Fusion Science and Technology. in press (2021).

  37. 37.

    S. A. Briggs, P. D. Edmondson, K. C. Littrell, Y. Yamamoto, R. H. Howard, C. R. Daily, K. A. Terrani, K. Sridharan, K. G. Field, Acta Materialia. 129, 217 (2017).

    CAS  Article  Google Scholar 

Download references


This research was funded by the U.S. Department of Energy, Office of Fusion Energy Sciences and Office of Nuclear Energy, GAIN program. The experimental work at ORNL was assisted by A. Willoughby, M. Stephens, T. Lowe and V. Cox. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (

Author information



Corresponding author

Correspondence to Bruce A. Pint.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pint, B.A., Jun, J. Pre-Oxidation to Improve Liquid Metal Compatibility. Oxid Met 96, 231–240 (2021).

Download citation


  • Fusion energy
  • Nuclear energy
  • Liquid metal compatibility