Skip to main content

Atmosphere Influence on Oxidation at High Temperature of Ni–Cr–Si Model Alloys

Abstract

The use of nitriding and carburizing atmospheres in industrial furnaces leads to a drastic reduction in their lifetime. In order to enhance protection, a pre-oxidation step of the chromia-forming alloys used in the furnaces is necessary. The aim of this study is to show the influence of the gaseous environment on the degradation resistance of a pre-oxidized Ni–Cr–Si model alloy at 950 °C. Two different gaseous environments were used: dry air and nitrogen containing 5 volume % of hydrogen (N2–5%H2). After dry air oxidation, a continuous amorphous SiO2 subscale was formed at the chromia/metal interface. After oxidation in N2–5%H2, containing 20 ppmv oxygen, a non-continuous crystalline SiO2 subscale is observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    French. Antoni, L. & Galerie, A. Techniques de l’Ingénieur, traité Matériaux métalliques Réf : m4224 29 (2002).

  2. 2.

    Olivares, R. I., Stein, W., Nguyen, T. D. & Young, D. J. Adv. Mater. Technol. Foss. Power Plants 889 (2016).

  3. 3.

    M. J. Bennett, J. A. Desport, and P. A. Labun, Oxidation of Metals 22, 1984 (291–306).

    CAS  Article  Google Scholar 

  4. 4.

    R. C. Lobb, J. A. Sasse, and H. E. Evans, Materials Science and Technology 5, 1989 (828–834).

    CAS  Article  Google Scholar 

  5. 5.

    A. Schnaas and H. J. Grabke, Oxidation of Metals 12, 1978 (387–404).

    CAS  Article  Google Scholar 

  6. 6.

    G. Southwell, S. MacAlpine, and D. Young, Journal of Materials and Science and Engineering 88, 1987 (81–87).

    CAS  Article  Google Scholar 

  7. 7.

    Jiang, C., Xie, Y., Kong, C., Zhang, J. & Young, D. J. Corros. Sci. 174, 108801 (2020).

  8. 8.

    Nguyen, T. D., Zhang, J. & Young, D. J. 87, 541 (2017).

  9. 9.

    R. I. Olivares, D. J. Young, T. D. Nguyen, and P. Marvig, Oxidation of Metals 90, 2018 (1–25).

    CAS  Article  Google Scholar 

  10. 10.

    H. E. McCoy, Corrosion 21, 1965 (84–94).

    CAS  Article  Google Scholar 

  11. 11.

    W. Bochnowski, Ł Szyller, and M. Osetek, Engineering Failure Analysis 103, 2019 (173–183).

    CAS  Article  Google Scholar 

  12. 12.

    C. Issartel, H. Buscail, and S. Mathieu, Materials and Corrosion 70, 2019 (1410–1415).

    CAS  Article  Google Scholar 

  13. 13.

    T. D. Nguyen, J. Zhang, and D. J. Young, Corrosion Science 133, 2018 (432–442).

    CAS  Article  Google Scholar 

  14. 14.

    T. D. Nguyen, J. Zhang, and D. J. Young, Oxidation of Metals 81, 2014 (549–574).

    CAS  Article  Google Scholar 

  15. 15.

    T. D. Nguyen, J. Q. Zhang, and D. J. Young, Materials at High Temperatures 32, 2015 (16–21).

    CAS  Article  Google Scholar 

  16. 16.

    T. D. Nguyen, J. Zhang, and D. J. Young, Oxidation of Metals 83, 2015 (575–594).

    CAS  Article  Google Scholar 

  17. 17.

    H. Buscail, C. Issartel, F. Riffard, R. Rolland, S. Perrier, A. Fleurentin, and C. Josse, Applied Surface Science 258, 2011 (678–686).

    CAS  Article  Google Scholar 

  18. 18.

    H. Buscail, C. Issartel, C. T. Nguyen, S. Perrier, and A. Fleurentin, Matériaux & Techniques 98, 2010 (209–218).

    Article  Google Scholar 

  19. 19.

    C. Issartel, H. Buscail, C. T. Nguyen, and A. Fleurentin, Materials and Corrosion 61, 2010 (929–938).

    CAS  Article  Google Scholar 

  20. 20.

    T. D. Nguyen, Y. Xie, S. Ding, J. Zhang, and D. J. Young, Oxidation of Metals 87, 2017 (605–616).

    CAS  Article  Google Scholar 

  21. 21.

    J. W. Newkirk and J. A. Sago, MRS Proceedings 194, 1990 (183).

    CAS  Article  Google Scholar 

  22. 22.

    H. Buscail, C. Issartel, F. Riffard, R. Rolland, S. Perrier, and A. Fleurentin, Corrosion Science 65, 2012 (535–541).

    CAS  Article  Google Scholar 

  23. 23.

    H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster, Oxidation of Metals 14, 1980 (235–247).

    CAS  Article  Google Scholar 

  24. 24.

    H. Buscail, R. Rolland, F. Riffard, C. Issartel, C. Combe, and P. F. Cardey, Oxidation of Metals 87, 2017 (837–849).

    CAS  Article  Google Scholar 

  25. 25.

    S. J. Oana, Earth Science Nagoya University 5, 1957 (103–124).

    CAS  Google Scholar 

  26. 26.

    A. S. Dorcheh, M. Schütze, and M. C. Galetz, Corrosion Science 130, 2018 (261–269).

    CAS  Article  Google Scholar 

  27. 27.

    A. Soleimani-Dorcheh and M. C. Galetz, Oxidation of Metals 84, 2015 (73–90).

    CAS  Article  Google Scholar 

  28. 28.

    C. Wagner, Journal of Electrochemical Society 103, 1956 (627).

    CAS  Article  Google Scholar 

  29. 29.

    A. S. Dorcheh and M. C. Galetz, JOM 68, 2016 (2793–2802).

    CAS  Article  Google Scholar 

  30. 30.

    B. Pieraggi, Oxidation of Metals 27, 1987 (177–185).

    CAS  Article  Google Scholar 

  31. 31.

    G. A. Greene and C. C. Finfrock, Oxidation of Metals 55, 2001 (505–521).

    CAS  Article  Google Scholar 

  32. 32.

    D. L. Douglass, P. Nanni, C. De Asmundis, and C. Bottino, Oxidation of Metals 28, 1987 (309–328).

    CAS  Article  Google Scholar 

  33. 33.

    B. Li and B. Gleeson, Oxidation of Metals 65, 2006 (101–122).

    CAS  Article  Google Scholar 

  34. 34.

    W. C. Hagel and A. U. Seybolt, Journal of Electrochemical Society. 108, 1961 (1146).

    CAS  Article  Google Scholar 

  35. 35.

    C. A. Stearns, F. J. Kohl, and G. C. Fryburg, Journal of Electrochemical Society 121, 1974 (945).

    CAS  Article  Google Scholar 

  36. 36.

    R. J. Hussey and M. J. Graham, Oxidation of Metals 45, 1996 (349–374).

    CAS  Article  Google Scholar 

  37. 37.

    F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 1995 (113–145).

    CAS  Article  Google Scholar 

  38. 38.

    G. R. Johnston, High Temperatures High Pressures 14, 1982 (695–707).

    CAS  Google Scholar 

  39. 39.

    J. C. Slater, Journal of Chemical Physics 41, 1964 (3199–3204).

    CAS  Article  Google Scholar 

  40. 40.

    T. Onishi, S. Nakakubo, and M. Takeda, Materials Transactions 51, 2010 (482–487).

    CAS  Article  Google Scholar 

  41. 41.

    Solimani, A., Nguyen, T., Zhang, J., Young, D., Schütze, M. & Galetz, M. C. Corros. Sci. 176, 109023 (2020).

Download references

Acknowledgements

This work was supported in part by funding Laboratoire Vellave sur l'Elaboration et l'Etude des Matériaux.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marion Poncet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poncet, M., Issartel, C., Perrier, S. et al. Atmosphere Influence on Oxidation at High Temperature of Ni–Cr–Si Model Alloys. Oxid Met 96, 117–127 (2021). https://doi.org/10.1007/s11085-021-10056-5

Download citation

Keywords

  • Chromia
  • High temperature oxidation
  • N2–5vol.%H2
  • Silica
  • Nickel model alloys
  • Cristobalite