Skip to main content

Comparison Between the Oxidation Behaviors of Ti6242S, Ti6246, TiXT Alloys, and Pure Titanium

Abstract

Isothermal oxidation tests were performed on Ti6242S (Ti—6% Al—2% Sn—4% Zr—2% Mo, 0.08% Si), Ti6246 (Ti—6% Al—2% Sn—4% Zr—6% Mo, 0.05% Si), TiXT (Ti—0.45% Si) alloys and pure titanium in laboratory air at 560 °C, 600 °C and 650 °C for 1000 h to compare their oxidation behaviors. This study aims to highlight the role of molybdenum and silicon in the oxidation resistance of titanium alloys. The results show that 6 wt.% of Mo in Ti6246 alloys does not substantially change the oxidation behavior compared to Ti6242S alloy containing only 2 wt.% of Mo. Meanwhile, the presence of 0.45 wt.% Si seems to be clearly beneficial for the oxidation resistance, reducing the parabolic rate constant by a factor larger than 2 as compared to pure titanium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    R. Gaddam, B. Sefer, R. Pederson, and M.-L. Antti, Mater. Charact. 99, 2015 (166).

    CAS  Article  Google Scholar 

  2. 2.

    R. Gaddam, B. Sefer, R. Pederson, and M. L. Antti, Sci. Eng. 48, 2013 (1).

    Google Scholar 

  3. 3.

    K. S. McReynolds and S. Tamirisakandala, Metall. Mater. Trans. A 42, 2011 (1732).

    CAS  Article  Google Scholar 

  4. 4.

    R. N. Shenoy, J. Unnam, and R. K. Clark, Oxid. Met. 26, 1986 (105).

    CAS  Article  Google Scholar 

  5. 5.

    C. E. Shamblen and T. K. Redden, in The Science, Technology, and Application of Titanium, eds. R. I. Jaffee and N. E. Promisel (Pergamon Press, Oxford, 1968), p. 199.

    Google Scholar 

  6. 6.

    M. Berthaud, Etude du comportement de l’alliage de titane Ti6242S à haute température sous atmosphères complexes : applications aéronautiques, Ph.D. Thésis Université de Bourgogne Franche-Comté (2018).

  7. 7.

    M. Berthaud, I. Popa, R. Chassagnon, O. Heintz, J. Lavková, and S. Chevalier, Corr. Sci. 164, 2020 (108049).

    CAS  Article  Google Scholar 

  8. 8.

    C. Dupressoire, A. Rouaix-Vande Put, P. Emile, C. Archambeau-Mirguet, R. Peraldi, and D. Monceau, Oxid. Met. 87, 2017 (343).

    CAS  Article  Google Scholar 

  9. 9.

    I. Gurappa, J. Alloy Compd. 389, 2005 (190).

    Article  Google Scholar 

  10. 10.

    C. Leyens, M. Peters, and W. A. Kaysser, Mater. Sci. Forum 251–254, 1997 (769).

    Article  Google Scholar 

  11. 11.

    C. Leyens, M. Peters, and W. A. Kaysser, Mater. Sci. Technol. 213 (1996)

  12. 12.

    W. Jia, W. Zeng, X. Zhang, Y. Zhou, J. Liu, and Q. Wang, J. Mater. Sci. 46, 2011 (1351).

    CAS  Article  Google Scholar 

  13. 13.

    B. Champin, L. Graff, M. Armand, G. Béranger, and C. Coddet, J. Common Met. 69, 1980 (163).

    CAS  Article  Google Scholar 

  14. 14.

    A. M. Chaze, C. Coddet, and G. Béranger, J Less-Common Met. 83, 1982 (49).

    CAS  Article  Google Scholar 

  15. 15.

    C. Julius, J. Phase Equilib. Diffus. 27, 2006 (255).

    Article  Google Scholar 

  16. 16.

    A.M. Chaze and C. Coddet, Oxid. Met. 27 (1987)

  17. 17.

    K. Maeda, S. Suzuki, K. Ueda, T. Kitashima, S. K. Bhattacharya, R. Sahara, and T. Narushima, J. Alloys Compd. 776, 2019 (519).

    CAS  Article  Google Scholar 

  18. 18.

    Y. Shida and H. Anada, Mater. Trans. JIM 35, 1994 (623).

    CAS  Article  Google Scholar 

  19. 19.

    K. Per, High Temperature Corrosion, (Elsevier Applied Science Publishers, Essex, 1988).

    Google Scholar 

  20. 20.

    H. L. Du, P. K. Datta, D. B. Lewis, and J. S. Burnell-Gray, Corros. Sci. 36, 1994 (631).

    CAS  Article  Google Scholar 

  21. 21.

    C.J. Rosa, Oxid. Met. 17, 1982 (359–369).

    CAS  Article  Google Scholar 

  22. 22.

    D. Vojtech, B. Bartova, and T. Kubatík, Mater. Sci. Eng. A 361, 2003 (50).

    Article  Google Scholar 

  23. 23.

    H. Habazaki, K. Shimizu, S. Nagata, P. Skeldon, G. E. Thompson, and G. C. Wood, Corros. Sci. 44, 2002 (1047).

    CAS  Article  Google Scholar 

  24. 24.

    A. M. Chaze and C. Coddet, J. Less-Common Met. 124, 1986 (73).

    CAS  Article  Google Scholar 

  25. 25.

    A. Kanjer, L. Lavisse, V. Optasanu, P. Berger, C. Gorny, P. Peyre, F. Herbst, O. Heintz, N. Geoffroy, T. Montesin, and M. C. Marco de Lucas, Coat. Technol. 326, 2017 (146).

    CAS  Article  Google Scholar 

  26. 26.

    C. Coddet and A. M. Chaze, J Less Common Met. 124, 1986 (73).

    Article  Google Scholar 

  27. 27.

    F. Torrent, L. Lavisse, P. Berger, G. Pillon, C. Lopes, F. Vaz, and M. C. Marco de Lucas, Coat. Technol. 255, 2014 (146).

    CAS  Article  Google Scholar 

  28. 28.

    J. Unnam, R. N. Shenoy, and R. K. Clark, Oxid. Met. 26, 1986 (231).

    CAS  Article  Google Scholar 

  29. 29.

    C. J. Rosa, J. Metallurg. Trans. 1, 1970 (2517).

    CAS  Google Scholar 

  30. 30.

    K. N. Strafford and J. M. Towell, Oxid. Met. 10, 1976 (41).

    CAS  Article  Google Scholar 

  31. 31.

    M. Göbel, V. A. C. Haanappel, and M. F. Stroosnijder, Oxid. Met. 55, 2001 (137).

    Article  Google Scholar 

  32. 32.

    H. Conrad, Prog. Mater. Sci. 26, 1981 (123).

    CAS  Article  Google Scholar 

  33. 33.

    Z. Liu and G. Welsch, Metallurg. Trans. A 19, 1998 (527).

    CAS  Article  Google Scholar 

  34. 34.

    C. Leyens and M. Peters (eds.), Titanium and Titanium Alloys: Fundamentals and Applications, 1st ed (Wiley, New York, 2003),.

    Google Scholar 

  35. 35.

    N. Vaché and D. Monceau, Oxid. Met. 93, 2020 (215).

    Article  Google Scholar 

  36. 36.

    A. Casadebaigt, D. Monceau, and J. Hugues, High Temperature Oxidation of Ti–6Al–4V Alloy Fabricated by Additive Manufacturing. Influence on Mechanical Properties, MATEC Web of Conferences 321, 2020 (03006).

    CAS  Article  Google Scholar 

  37. 37.

    N. Vaché, Y. Cadoret, B. Dod, and D. Monceau, Corros. Sci. 178, 2021 (109041).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank ANR French National Research Agency for financial funding of ALTITUDE project and TIMET Savoie for providing the materials.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Virgil Optasanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vincent, B., Optasanu, V., Herbst, F. et al. Comparison Between the Oxidation Behaviors of Ti6242S, Ti6246, TiXT Alloys, and Pure Titanium. Oxid Met 96, 283–294 (2021). https://doi.org/10.1007/s11085-021-10051-w

Download citation

Keywords

  • Titanium alloys
  • High-temperature oxidation
  • Oxygen diffusion
  • Kinetics