Skip to main content

Effect of Temperature on the Oxidation Mechanism of Ni-30Cr Alloy

Abstract

Samples of Ni-30Cr alloy were oxidized at different temperatures from 500 to 900 °C in a nominal oxygen partial pressure of 5 × 10−6 atm. The parabolic rate constants for growth of the oxide scales, which were confirmed to be chromia, were in agreement with the literature following an Arrhenius law. The semiconductor character of the chromia scale was investigated in order to reveal the nature of the dominant point defects responsible for the diffusion process during oxidation. An n-type semiconductor was found at low temperature (500 °C), and p-type semiconductor at high temperature (900 °C). Our results suggest that oxygen vacancies and chromium vacancies are dominant in grown chromia of n- and p-type, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    F. Cattant, D. Crusset, and D. Féron, Materials Today 11, 32 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    S. J. Zinkle and G. S. Was, Acta Materialia 61, 735 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    K. L. Murty and I. Charit, Journal of Nuclear Materials 383, 189 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    M. Perrut, P. Caron, M. Thomas, and A. Couret, Comptes Rendus Physique 19, 657 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    L. Bataillou, Modélisation de l’oxydation à haute température des alliages Ni-Cr. PhD Thesis, University of Toulouse, France, (2019).

  6. 6.

    P. Moulin, A. M. Huntz, and P. Lacombe, Acta Metallurgica 28, 745 (1980).

    CAS  Article  Google Scholar 

  7. 7.

    S. C. Tsai, A. M. Huntz, and C. Dolin, Materials Science and Engineering: A 212, 6 (1996).

    Article  Google Scholar 

  8. 8.

    T. A. Ramanarayanan, J. D. Mumford, C. M. Chun, and R. A. Petkovic, Solid State Ionics 136–137, 83 (2000).

    Article  Google Scholar 

  9. 9.

    P. Berthod, Oxidation of Metals 64, 235 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    L. Bataillou, L. Martinelli, C. Desgranges, S. Bosonnet, K. Ginestar, F. Miserque, Y. Wouters, L. Latu-Romain, A. Pugliara, A. Proietti and D. Monceau, Oxidation of Metals 93, 329 (2020).

  11. 11.

    M. Kemdehoundja, J. F. Dinhut, J. L. Grosseau-Poussard, and M. Jeannin, Materials Science and Engineering: A 435–436, 666 (2006).

    Article  Google Scholar 

  12. 12.

    E. Schmucker, C. Petitjean, L. Martinelli, P.-J. Panteix, S. B. Lagha, and M. Vilasi, Corrosion Science 111, 474 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Madi, L. Latu-Romain, S. Mathieu, V. Parry, J.-P. Petit, M. Vilasi, and Y. Wouters, Corrosion Science 87, 218 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    L. Latu-Romain, Y. Madi, S. Mathieu, F. Robaut, J.-P. Petit, and Y. Wouters, Corrosion Science 101, 193 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, M. Ollivier, A. Galerie, and Y. Wouters, Oxidation of Metals 86, 497 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    L. Latu-Romain, S. Mathieu, M. Vilasi, G. Renou, S. Coindeau, A. Galerie, and Y. Wouters, Oxidation of Metals 88, 481 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, A. Galerie, and Y. Wouters, Corrosion Science 126, 238 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    L. Latu-Romain, Y. Parsa, M. Ollivier, S. Mathieu, M. Vilasi, G. Renou, F. Robaut, and Y. Wouters, Materials at High Temperatures 35, 159 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Parsa, L. Latu-Romain, Y. Wouters, S. Mathieu, T. Perez, and M. Vilasi, Corrosion Science 141, 46 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    C. Poulain, A. Seyeux, S. Voyshnis, and P. Marcus, Oxidation of Metals 88, 423 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    J.-P. Petit, R. Boichot, A. Loucif, A. Srisrual, and Y. Wouters, Oxidation of Metals 79, 349 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    D. Monceau and B. Pieraggi, Oxidation of Metals 50, 477 (1998).

    CAS  Article  Google Scholar 

  23. 23.

    D. J. Young and M. Cohen, Journal of the Electrochemical Society 124, 769 (1977).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Cécile Blanc and Jérôme Varlet from the Service d'Études Analytiques et de Réactivité des Surfaces in the Université Paris-Saclay for the XRD measurement.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xian Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Martinelli, L., Bosonnet, S. et al. Effect of Temperature on the Oxidation Mechanism of Ni-30Cr Alloy. Oxid Met 96, 69–80 (2021). https://doi.org/10.1007/s11085-021-10049-4

Download citation

Keywords

  • Ni-30Cr oxidation
  • Chromia
  • Semiconductor
  • Point defects