Skip to main content
Log in

Effect of Temperature on the Oxidation Mechanism of Ni-30Cr Alloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Samples of Ni-30Cr alloy were oxidized at different temperatures from 500 to 900 °C in a nominal oxygen partial pressure of 5 × 10−6 atm. The parabolic rate constants for growth of the oxide scales, which were confirmed to be chromia, were in agreement with the literature following an Arrhenius law. The semiconductor character of the chromia scale was investigated in order to reveal the nature of the dominant point defects responsible for the diffusion process during oxidation. An n-type semiconductor was found at low temperature (500 °C), and p-type semiconductor at high temperature (900 °C). Our results suggest that oxygen vacancies and chromium vacancies are dominant in grown chromia of n- and p-type, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Cattant, D. Crusset, and D. Féron, Materials Today 11, 32 (2008).

    Article  CAS  Google Scholar 

  2. S. J. Zinkle and G. S. Was, Acta Materialia 61, 735 (2013).

    Article  CAS  Google Scholar 

  3. K. L. Murty and I. Charit, Journal of Nuclear Materials 383, 189 (2008).

    Article  CAS  Google Scholar 

  4. M. Perrut, P. Caron, M. Thomas, and A. Couret, Comptes Rendus Physique 19, 657 (2018).

    Article  CAS  Google Scholar 

  5. L. Bataillou, Modélisation de l’oxydation à haute température des alliages Ni-Cr. PhD Thesis, University of Toulouse, France, (2019).

  6. P. Moulin, A. M. Huntz, and P. Lacombe, Acta Metallurgica 28, 745 (1980).

    Article  CAS  Google Scholar 

  7. S. C. Tsai, A. M. Huntz, and C. Dolin, Materials Science and Engineering: A 212, 6 (1996).

    Article  Google Scholar 

  8. T. A. Ramanarayanan, J. D. Mumford, C. M. Chun, and R. A. Petkovic, Solid State Ionics 136–137, 83 (2000).

    Article  Google Scholar 

  9. P. Berthod, Oxidation of Metals 64, 235 (2005).

    Article  CAS  Google Scholar 

  10. L. Bataillou, L. Martinelli, C. Desgranges, S. Bosonnet, K. Ginestar, F. Miserque, Y. Wouters, L. Latu-Romain, A. Pugliara, A. Proietti and D. Monceau, Oxidation of Metals 93, 329 (2020).

  11. M. Kemdehoundja, J. F. Dinhut, J. L. Grosseau-Poussard, and M. Jeannin, Materials Science and Engineering: A 435–436, 666 (2006).

    Article  Google Scholar 

  12. E. Schmucker, C. Petitjean, L. Martinelli, P.-J. Panteix, S. B. Lagha, and M. Vilasi, Corrosion Science 111, 474 (2016).

    Article  CAS  Google Scholar 

  13. Y. Madi, L. Latu-Romain, S. Mathieu, V. Parry, J.-P. Petit, M. Vilasi, and Y. Wouters, Corrosion Science 87, 218 (2014).

    Article  CAS  Google Scholar 

  14. L. Latu-Romain, Y. Madi, S. Mathieu, F. Robaut, J.-P. Petit, and Y. Wouters, Corrosion Science 101, 193 (2015).

    Article  CAS  Google Scholar 

  15. L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, M. Ollivier, A. Galerie, and Y. Wouters, Oxidation of Metals 86, 497 (2016).

    Article  CAS  Google Scholar 

  16. L. Latu-Romain, S. Mathieu, M. Vilasi, G. Renou, S. Coindeau, A. Galerie, and Y. Wouters, Oxidation of Metals 88, 481 (2017).

    Article  CAS  Google Scholar 

  17. L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, A. Galerie, and Y. Wouters, Corrosion Science 126, 238 (2017).

    Article  CAS  Google Scholar 

  18. L. Latu-Romain, Y. Parsa, M. Ollivier, S. Mathieu, M. Vilasi, G. Renou, F. Robaut, and Y. Wouters, Materials at High Temperatures 35, 159 (2018).

    Article  CAS  Google Scholar 

  19. Y. Parsa, L. Latu-Romain, Y. Wouters, S. Mathieu, T. Perez, and M. Vilasi, Corrosion Science 141, 46 (2018).

    Article  CAS  Google Scholar 

  20. C. Poulain, A. Seyeux, S. Voyshnis, and P. Marcus, Oxidation of Metals 88, 423 (2017).

    Article  CAS  Google Scholar 

  21. J.-P. Petit, R. Boichot, A. Loucif, A. Srisrual, and Y. Wouters, Oxidation of Metals 79, 349 (2013).

    Article  CAS  Google Scholar 

  22. D. Monceau and B. Pieraggi, Oxidation of Metals 50, 477 (1998).

    Article  CAS  Google Scholar 

  23. D. J. Young and M. Cohen, Journal of the Electrochemical Society 124, 769 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Cécile Blanc and Jérôme Varlet from the Service d'Études Analytiques et de Réactivité des Surfaces in the Université Paris-Saclay for the XRD measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Martinelli, L., Bosonnet, S. et al. Effect of Temperature on the Oxidation Mechanism of Ni-30Cr Alloy. Oxid Met 96, 69–80 (2021). https://doi.org/10.1007/s11085-021-10049-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10049-4

Keywords

Navigation