Skip to main content

The Effect of Water Vapor on NiO Formation by Ni–Cr Alloys at 650 °C (HTCPM Focus Issue, FNS-111)

Abstract

Exposure of Ni–Cr alloys containing 5–30 wt% Cr to Ar-20O2 and Ar-20O2-20H2O at 650 °C produced an external NiO layer, internal chromium oxidation and an intermediate zone of NiO + Cr2O3. The NiO layer growth rate decreased with increasing alloy Cr content. Addition of water vapor to dry O2 changed the NiO grain structure from equiaxed-shaped to columnar-shaped. In pure water vapor, a thin external NiO layer was formed above a layer of unoxidized metallic Ni, with an IOZ beneath. Water vapor effects on NiO formation are discussed in terms of different mechanisms whereby the volume increase in the IOZ is accommodated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    J. P. Shingledecker and G. M. Pharr, Journal of Materials Engineering and Performance. 22, (2), 2013 (454–462).

    CAS  Article  Google Scholar 

  2. 2.

    S. J. Patel, J. J. deBarbadillo, B. A. Baker, and R. D. Gollihue, Procedia Engineering. 55, 2013 (246–252).

    CAS  Article  Google Scholar 

  3. 3.

    F. Abe, Engineering. 1, (2), 2015 (211–224).

    CAS  Article  Google Scholar 

  4. 4.

    G. M. Ecer and G. H. Meier, Oxidation of Metals. 13, (2), 1979 (119–158).

    CAS  Article  Google Scholar 

  5. 5.

    K. P. R. Reddy, J. L. Smialek, and A. R. Cooper, Oxidation of Metals. 17, (5), 1982 (429–449).

    CAS  Article  Google Scholar 

  6. 6.

    J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak, and W. J. Quadakkers, Materials Science and Engineering. A. 477, (1), 2008 (259–270).

    Article  Google Scholar 

  7. 7.

    N. Mu, K. Y. Jung, N. M. Yanar, G. H. Meier, F. S. Pettit, and G. R. Holcomb, Oxidation of Metals. 78, (3–4), 2012 (221–237).

    CAS  Article  Google Scholar 

  8. 8.

    E. Essuman, G. H. Meier, J. Zurek, M. Haensel, T. Norby, L. Singheiser, and W. J. Quadakkers, Corrosion Science. 50, (6), 2008 (1753–1760).

    CAS  Article  Google Scholar 

  9. 9.

    P. Berthod, L. Aranda, S. Mathieu, and M. Vilasi, Oxidation of Metals. 79, (5–6), 2013 (517–527).

    CAS  Article  Google Scholar 

  10. 10.

    D. Simon, B. Gorr, and H. J. Christ, Oxidation of Metals. 87, (3–4), 2017 (417–429).

    CAS  Article  Google Scholar 

  11. 11.

    A. Holt and P. Kofstad, Solid State Ionics. 69, 1994 (137–143).

    CAS  Article  Google Scholar 

  12. 12.

    K. Arnold, G. Tatlock, C. Kenel, A. Colella, and P. Matteazzi, Materials at. High Temperature. 5, 2017 (1–10).

    Google Scholar 

  13. 13.

    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, A. Galerie, and Y. Wouters, Corrosion Science 126, 2017 (238–246).

    CAS  Article  Google Scholar 

  14. 14.

    P. Guo, J. Zhang, D. J. Young, and C. H. Konrad, Oxidation of Metals. 83, (3–4), 2015 (223–235).

    CAS  Article  Google Scholar 

  15. 15.

    A. Prillieux, D. Jullian, J. Zhang, D. Monceau, and D. J. Young, Oxidation of Metals. 87, (3–4), 2017 (273–283).

    CAS  Article  Google Scholar 

  16. 16.

    C. K. Kim and L. W. Hobbs, Oxidation of Metals. 47, (1–2), 1997 (69–89).

    CAS  Article  Google Scholar 

  17. 17.

    S. Chevalier, F. Desserrey, and J. Larpin, Oxidation of Metals. 64, (3–4), 2005 (219–234).

    CAS  Article  Google Scholar 

  18. 18.

    C. Jiang, Y. Xie, C. Kong, J. Zhang, and D. J. Young, Corrosion Science. 174, 2020 (108801).

    CAS  Article  Google Scholar 

  19. 19.

    A. Galerie, Y. Wouters, and M. Caillet, Materials Science Forum. 369–372, 2001 (231–238).

    Article  Google Scholar 

  20. 20.

    C. Anghel, E. Hornlund, G. Hultquist, and M. Limback, Applied Surface Science. 233, (1–4), 2004 (392–401).

    CAS  Article  Google Scholar 

  21. 21.

    J. P. Abellan, T. Olszewski, G. H. Meier, L. Singheiser, and W. J. Quadakkers, International Journal of Materials Research. 101, (2), 2010 (287–299).

    CAS  Article  Google Scholar 

  22. 22.

    T. J. Collins, Biotechniques. 43, 2007 (25–30).

    Article  Google Scholar 

  23. 23.

    S. R. J. Saunders, M. Monteiro, and F. Rizzo, Progress in Materials Science. 53, (5), 2008 (775–837).

    CAS  Article  Google Scholar 

  24. 24.

    J.-H. Ahn, B.-J. Kim, J.-G. Kim, H.-J. Kim, G.-W. Hong, H.-G. Lee, J.-M. Yoo, and H. Pradeep, Physica C. 445–448, 2006 (620–624).

    Article  Google Scholar 

  25. 25.

    M. Auchi, S. Hayashi, K. Toyota, and S. Ukai, Oxidation of Metals. 78, (1–2), 2012 (51–61).

    CAS  Article  Google Scholar 

  26. 26.

    S. Hayashi, S. Narita, and T. Narita, Oxidation of Metals. 74, (1–2), 2010 (33–47).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Australian Research Council for financial support under its Discovery Project Scheme. The first author is greatly thankful for scholarship support from the China Scholarship Council (CSC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to David J. Young.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Zhang, J. & Young, D.J. The Effect of Water Vapor on NiO Formation by Ni–Cr Alloys at 650 °C (HTCPM Focus Issue, FNS-111). Oxid Met 96, 57–68 (2021). https://doi.org/10.1007/s11085-021-10047-6

Download citation

Keywords

  • Ni–Cr alloy
  • NiO
  • Water vapor
  • Growth kinetics
  • Morphology