Skip to main content

Microstructural Analysis of Zirconia at the Fuel-Cladding Interface in Medium and High Burnup Irradiated Fuel Rods

Abstract

During irradiation in a nuclear reactor, the UO2 fuel and the Zr cladding come into contact due to fuel thermal expansion and cladding creep. The inner surface of the Zr cladding in contact with the UO2 fuel therefore oxidizes. This paper analyzes the microstructure of zirconia formed at the Zr cladding/UO2 interface in two samples with different burnups. It seems that the zirconia develops ‘normally’ until it comes into contact with the fuel. The development of internal zirconia is, however, constrained mechanically by the contact of the UO2 fuel. Four different zones can be distinguished in the zirconia layer of each sample. In the medium-burnup sample (37 GWd/tU), the zirconia in the first zone in contact with the cladding exhibits the same kind of microstructure as ‘ordinary’ zirconium oxide formed on the cladding outer surface, which is characterized by columnar and equiaxed grains. Thereafter, two intermediate zones can be observed: a first composed of very small equiaxed grains and a second with a mixture of intermediate and large grains. In the high-burnup sample (61 GWd/tU), zirconia presents a wavy interface with some circumvolutions. The ZrO2 in contact with the fuel is more developed in this case than in the medium-burnup sample, but it shows the same microstructure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Ciszak, C., Mermoux, M., Miro, S., Gutierrez, G., Lepretre, F., Popa, I., Hanifi, K., Zacharie-Aubrun, I., Fayette, L. and Chevalier, S. Journal of Nuclear Materials 495, 392–404 (2017).

  2. 2.

    Ciszak, C., Mermoux, M., Gutierrez, G., Leprêtre, F., Duriez, C., Popa, I., Fayette, L. and Chevalier, S. Journal of Raman Spectroscopy 50, 425–435 (2019).

  3. 3.

    Ciszak, C., Desgranges, L., Garcia, P., Sabathier, C., Fayette, L. and Chevalier, S. Journal of Nuclear Materials 520, 110–120 (2019).

  4. 4.

    Lach, T.G., Edwards, D.J., Buck, E.C., McNamara, B.K., Schwantes, J.M. and Clark, R.A. Journal of Nuclear Materials 521, 120–125 (2019).

  5. 5.

    Clark, R.A., Conroy, M.A., Lach, T.G., Buck, E.C., Pellegrini, K.L., McNamara, B.K. and Schwantes, J.M. npj Materials Degradation 4, 1–9 (2020).

  6. 6.

    Noirot, J., Zacharie-Aubrun, I. and Blay, T. Nuclear Engineering and Technology 50, 259–267 (2018).

  7. 7.

    Iltis, X., Lefebvre, F. and Lemaignan, C. Journal of Nuclear Materials 224, 109–120 (1995).

  8. 8.

    Reyes, M., Wang, P., Was, G. and Marian, J. Journal of Nuclear Materials 523, 56–65 (2019).

  9. 9.

    Li, H., Glavicic, M.G. and Szpunar, J.A. Materials Science and Engineering: A 366, 164–174 (2004).

  10. 10.

    Hu, J., Garner, A., Frankel, P., Li, M., Kirk, M.A., Lozano-Perez, S., Preuss, M. and Grovenor, C. Acta Materialia 173, 313–326 (2019).

  11. 11.

    Liu, J., He, G., Hu, J., Shen, Z., Kirk, M., Li, M., Ryan, E., Baldo, P., Lozano-Perez, S. and Grovenor, C. Journal of Nuclear Materials 513, 226–231 (2019).

  12. 12.

    Liao, J., Yang, Z., Qiu, S., Peng, Q., Li, Z. and Zhang, J. Journal of Nuclear Materials 524, 101–110 (2019).

  13. 13.

    Roy, C. and Burgess, B. Oxidation of Metals 2, 235–261 (1970).

  14. 14.

    Garner, A., Gholinia, A., Frankel, P., Gass, M., MacLaren, I. and Preuss, M. Acta Materialia 80, 159–171 (2014).

  15. 15.

    International Atomic Energy Agency (IAEA), Corrosion of zirconium alloys in nuclear power plants, IAEA-TECDOC-684, IAEA, Vienna (1992).

  16. 16.

    Garner, A., Baxter, F., Frankel, P., Topping, M., Harte, A., Slater, T., Tejland, P., Romero, J., Darby, Cole-Baker, A., Gass, M. and Preuss, M. 18th International Symposium on Zirconium in the Nuclear Industry ASTM International (2018)

  17. 17.

    Ploc, R.A. Journal of Nuclear Materials 61, 79–87 (1976).

  18. 18.

    Polatidis, E., Frankel, P., Wei, J., Klaus, M., Comstock, R.J., Ambard, A., Lyon, S., Cottis, R.A. and Preuss, M. Journal of Nuclear Materials 432, 102–112 (2013).

  19. 19.

    Zhang, Y., Jiang, W., Wang, C., Namavar, F., Edmondson, P.D., Zhu, Z., Gao, F., Lian, J. and Weber, W.J. Physical Review B 82, 184105 (2010).

  20. 20.

    Gibert, F., Couvreur, C., Damien, D., Gautier-Soyer, M., Thromat, N., Guittet, M.J., Serruys, Y., Bouffard, S. and Elkaim, E. (IAEA-TECDOC--1128). International Atomic Energy Agency (IAEA) (1999)

  21. 21.

    Simeone, D., Baldinozzi, G., Gosset, D., LeCaër, S. and Mazerolles, L. Physical Review B 70, 134116 (2004).

  22. 22.

    Simeone, D., Baldinozzi, G., Gosset, D. and Le Caër, S. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 250, 95–100 (2006).

  23. 23.

    Simeone, D., Baldinozzi, G., Gosset, D., LeCaër, S., Mazerolles, L., Monnet, I. and Bouffard, S. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, 3023–3026 (2008).

  24. 24.

    Simeone, D., Gosset, D., Bechade, J.L. and Chevarier, A. Journal of Nuclear Materials 300, 27–38 (2002).

  25. 25.

    Roy, C. and David, G. Journal of Nuclear Materials 37, 71–81 (1970).

  26. 26.

    Pêcheur, D., Lefebvre, F., Motta, A.T., Lemaignan, C. and Wadier, J.F. Journal of Nuclear Materials 189, 318–332 (1992).

  27. 27.

    Garvie, R.C. Journal of Physical Chemistry 82, 218–224 (1978).

Download references

Acknowledgements

The authors would like to thank EDF and FRAMATOME for their technical and financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Schneider.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schneider, C., Fayette, L., Zacharie-Aubrun, I. et al. Microstructural Analysis of Zirconia at the Fuel-Cladding Interface in Medium and High Burnup Irradiated Fuel Rods. Oxid Met 96, 295–306 (2021). https://doi.org/10.1007/s11085-021-10045-8

Download citation

Keywords

  • Zirconia
  • Nuclear fuel
  • Zirconium alloys
  • Multilayer interfaces
  • Solid-state oxidation
  • Interfaces characterizations