Skip to main content

Should Gold Marker or TEM-ASTAR Characterization Be Used to Determine Oxide Growth Direction?

Abstract

Oxidation of chromia-forming alloys (pure chromium, nickel–chromium alloy and ferritic stainless steel alloy) at temperature ranging from 800 to 1050 °C was conducted on samples with or without gold markers applied prior to testing. Gold is often used as a marker in order to identify oxide growth direction. Its localization inside the oxide scale can demonstrate an inward or an outward growth. It is found that gold particles can be found either at the internal metal/oxide interface or inside the scale or again at the external oxide/gas interface on the same sample (on NiCr and stainless steel alloys). For pure chromium oxidation, gold is found inside the chromia scale, at the equiaxed-columnar interface, as expected from ASTAR-TEM characterization. However, photoelectrochemical characterization has shown that gold can modify the semiconducting chromia properties. Finally, gold is not inert in these several conditions and should not be considered in these present cases, but also more generally in most cases, as an appropriate marker. On the contrary, ASTAR maps may permit to access the oxide growth direction without interfering the studied system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    W. J. Quadakkers, A. Elschner, and W. Speier, H. Nickel, Applied Surface Science 52, (4), 271–287 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    S. Chevalier, G. Bonnet, G. Borchardt, J.-C. Colson, and J.-P. Larpin, Ceramics 61, 177–187 (2000).

    CAS  Google Scholar 

  3. 3.

    J. Pfeil, J. Iron Steel Inst. 119, 501–547 (1929).

    Google Scholar 

  4. 4.

    P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of High Temperature Corrosion (Trans Tech Publication edition, 2008).

  5. 5.

    D. Young, High Temperature and Corrosion of Metals, ed. (2008).

  6. 6.

    H. Sieber, D. Hesse, X. Pan, S. Senz, and J. Heydenreich, J. Inorg. And Gal. Chem. 622, 1658–1666 (1996).

    CAS  Google Scholar 

  7. 7.

    X. Ledoux, S. Mathieu, M. Vilasi, Y. Wouters, P. Del-Gallo, and M. Wagner, Oxid. Met. 80, 25–35 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Q. Dong, G. Hultquist, G. I. Sproule, and M. J. Graham, Corros. Sci. 49, 3348–3360 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, A. Galerie, and Y. Wouters, Corros. Sci. 126, 238–246 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Parsa, L. Latu-Romain, Y. Wouters, S. Mathieu, T. Perez, and M. Vilasi, Corros. Sci. 141, 46–52 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    T. Perez, J. Ghanbaja, S. Mathieu, L. Latu-Romain, M. Vilasi, and Y. Wouters, Scripta Mater. 178, 176–180 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, and Y. Wouters, Oxid. Met. 90, (3–4), 255–266 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, and Y. Wouters, Oxid. Met. 90, (3–4), 267–277 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    E. Rauch and M. Véron, Automated crystal orientation and phase mapping in TEM. Mater. Charact. 98, 1–9 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, M. Ollivier, A. Galerie, and Y. Wouters, Oxid. Met. 86, (5), 497–509 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Z. Wu, J. Deng, S. Xie, H. Yang, X. Zhao, K. Zhang, H. Lin, H. Dai, and G. Guo, Microporous and Mesoporous Materials 224, 311–322 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    M. Eichelbaum, K. Rademann, R. Müller, M. Radtke, H. Riesemeier, and W. Görner, Angew Chem. Int. 44, 7905–7909 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    G. Mie, Annalen der Physik 25, 377 (1908).

    CAS  Article  Google Scholar 

  19. 19.

    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanotoday 2, 18 (2007).

    Article  Google Scholar 

  21. 21.

    W.A. Weyl, Coloured Glasses (The Society of Glass Technology, 1951).

  22. 22.

    J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak, and W. J. Quadakkers, Materials Science and Engineering A 477, 259–270 (2008).

    Article  Google Scholar 

  23. 23.

    D. Nguyen, J. Zhang, and D. J. Young, Corros. Sci. 112, 110–127 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    M. R. Ardigo-Besnard, I. Popa, O. Heintz, R. Chassagnon, M. Vilasi, F. Herbst, P. Girardon, and S. Chevalier, Applied Surface Science 412, 196–206 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    T. Roy, L. Latu-Romain, I. Guillotte, B. Latouche, Y. Wouters, Oxid. Met., to be published.

  26. 26.

    R. Prescott and M. J. Graham, Oxid. Met. 38, (3/4), 1992 (233–254).

    CAS  Article  Google Scholar 

  27. 27.

    E. W. A. Young, H. E. Bishop, and J. H. W. De Wit, Surf. Interface Anal. 9, 163–168 (1986).

    CAS  Article  Google Scholar 

  28. 28.

    F. Czerwinski, Acta Materialia 48, (3), 721–733 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the French National Research Agency (ANR) through the PSEUDO project. The authors acknowledge the facilities, and the scientific and technical assistance of the CMTC characterization platform of Grenoble INP supported by the Centre of Excellence of Multifunctional Architectured Materials "CEMAM" n°AN-10-LABX-44-01 funded by the "Investments for the Future" Program. The authors would like also to thank Florence Robaut for FIB-SEM preparation and Gilles Renou for TEM microscopy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Latu-Romain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Latu-Romain, L., Roy, T., Perez, T. et al. Should Gold Marker or TEM-ASTAR Characterization Be Used to Determine Oxide Growth Direction?. Oxid Met 96, 201–211 (2021). https://doi.org/10.1007/s11085-021-10042-x

Download citation

Keywords

  • Marker
  • Photoelectrochemistry
  • TEM-ASTAR
  • Chromia-former alloys
  • High-temperature oxidation