Skip to main content

Modeling of Trilayered Oxide Thermally Grown on 441 Ferritic Stainless Steel at 900 °C in Synthetic Air

Abstract

Ferritic stainless steel (AISI 441) oxidation was studied at 900 °C in synthetic air. At short time of oxidation (3 min), the oxide scale is comprised of chromia including some MnCr2O4 nodules (of a few tens of nanometers in diameter) and exhibits n-type conduction. Later, after 10 h, a trilayered morphology was observed with an internal equiaxed chromia, an intermediate columnar chromia and a top covering spinel layer. A model for oxide scale growth has been developed in this paper, taking into account all experimental observations and earlier studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    J. G. Grolig, J. Froitzheim, and J.-E. Svensson, Journal of Power Sources 248, 2014 (1007–1013).

    CAS  Article  Google Scholar 

  2. 2.

    P. Alnegren, M. Sattari, J.-E. Svensson, and J. Froitzheim, Journal of Power Sources 301, 2016 (170–178).

    CAS  Article  Google Scholar 

  3. 3.

    P. Alnegren, M. Sattari, J.-E. Svensson, and J. Froitzheim, Journal of Power Sources 392, 2018 (129–138).

    CAS  Article  Google Scholar 

  4. 4.

    Z. Yang, G.-G. Xia, C.-M. Wang, Z. Nie, J. Templeton, J. W. Stevenson, and P. Singh, J. Power Sources 183, 2008 (660–667).

    CAS  Article  Google Scholar 

  5. 5.

    A. Srisrual, S. Coindeau, A. Galerie, J.-P. Petit, and Y. Wouters, Corrosion of Science 51, 2009 (562–568).

    CAS  Article  Google Scholar 

  6. 6.

    V. Badin, E. Diamanti, P. Forêt, and E. Darque-Ceretti, Oxidation of Metals 82, 2014 (347–357).

    CAS  Article  Google Scholar 

  7. 7.

    M. F. Salgado, I. S. Carvalho, R. S. Santos, J. A. S. Porto, O. V. Correa, L. V. Ramanathan, A. S. Brandim, and V. F. C. Lins, Engineering of Failure Analysis 105, 2019 (215–226).

    Article  Google Scholar 

  8. 8.

    A. Vayyala, I. Povstugar, D. Naumenko, W. J. Quadakkers, H. Hattendorf, and J. Mayer, Journal of Electrochemical Society 167, 2020 (061502).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Madi, E. Salhi, F. Charlot, A. Galerie, and Y. Wouters, Oxidation of Metals 75, 2011 (167–181).

    CAS  Article  Google Scholar 

  10. 10.

    K. Bawane, K. Lu, Q. Li, and R. Bordia, Corrosion of Science 166, 2020 (108429).

    CAS  Article  Google Scholar 

  11. 11.

    S. Chandra-Ambhorn, Y. Wouters, L. Antoni, F. Toscan, and A. Galerie, J. Power Sources 171, 2007 (688–695).

    CAS  Article  Google Scholar 

  12. 12.

    Z. Chen, L. Wang, Z. Yu, F. Li, Z. Sun, H. Zhao, and K. C. Chou, High Temperature Materials and Processes 36, (7), 2017 (717–724).

    CAS  Article  Google Scholar 

  13. 13.

    M. R. Ardigo, I. Popa, L. Combemale, S. Chevalier, F. Herbst, and P. Girardon, Int. J. Hydrogen Energy 40, 2015 (5305–5312).

    CAS  Article  Google Scholar 

  14. 14.

    M. R. Ardigo-Besnard, I. Popa, O. Heintz, R. Chassagnon, M. Vilasi, F. Herbst, P. Girardon, and S. Chevalier, Applied Surface and Science 412, 2017 (196–206).

    CAS  Article  Google Scholar 

  15. 15.

    J. Issartel, S. Martoia, F. Charlot, V. Parry, G. Parry, R. Estevez, and Y. Wouters, Corrosion of Science 59, 2012 (148–156).

    CAS  Article  Google Scholar 

  16. 16.

    J. Issartel, R. Estevez, G. Parry, V. Parry, S. Martoia, and Y. Wouters, Oxidation of Metals 79, 2013 (65–72).

    CAS  Article  Google Scholar 

  17. 17.

    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, and Y. Wouters, Corrosion of Science 126, 2017 (238–246).

    CAS  Article  Google Scholar 

  18. 18.

    E. F. Rauch, J. Portillo, S. Nicolopoulos, D. Bultreys, S. Rouvimov, and P. Moeck, zeitschrift für kristallographie 225, 2010 (103–109).

    CAS  Article  Google Scholar 

  19. 19.

    J. Mougin, T. Le Bihan, and G. Lucazeau, Journal of Physics and Chemistry of Solids 62, 2001 (553).

    CAS  Article  Google Scholar 

  20. 20.

    G. T. Lin, Y. Q. Wang, X. Luo, J. Ma, H. L. Zhuang, D. Qian, L. H. Yin, F. C. Chen, J. Yan, R. R. Zhang, S. L. Zhang, W. Tong, W. H. Song, P. Tong, X. B. Zhu, and Y. P. Sun, Physical Review B 97, 2018 (064405).

    CAS  Article  Google Scholar 

  21. 21.

    Y. Madi, L. Latu-Romain, S. Mathieu, V. Parry, J.-P. Petit, M. Vilasi, and Y. Wouters, Corrosion of Science 87, 2014 (218–223).

    CAS  Article  Google Scholar 

  22. 22.

    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, A. Galerie, and Y. Wouters, Corrosion of Science 126, 2017 (238–246).

    CAS  Article  Google Scholar 

  23. 23.

    L. Latu-Romain, S. Mathieu, M. Vilasi, G. Renou, S. Coindeau, A. Galerie, and Y. Wouters, Oxidation of Metals 88, 2017 (481–493).

    CAS  Article  Google Scholar 

  24. 24.

    T. Perez, S. Mathieu, L. Latu-Romain, Y. Wouters, M. Vilasi (to be published).

Download references

Acknowledgements

The authors would like to thank Aperam for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yves Wouters.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, T., Latu-Romain, L., Guillotte, I. et al. Modeling of Trilayered Oxide Thermally Grown on 441 Ferritic Stainless Steel at 900 °C in Synthetic Air. Oxid Met 96, 31–41 (2021). https://doi.org/10.1007/s11085-021-10041-y

Download citation

Keywords

  • Ferritic stainless steel
  • Photoelectrochemistry
  • ASTAR-TEM
  • Growth modeling