Skip to main content

Carburization and Stress Profiles Characterized by High-Energy X-ray Diffraction in 316L Austenitic Stainless Steel After Exposure at 500 °C and 600 °C in Carburizing Liquid Sodium

Abstract

316L austenitic stainless steel was carburized in sodium containing a high-carbon activity at two different temperatures, 500 °C and 600 °C for 1000 h. The carbon profile, carbide mass fraction and residual stress tensor profile were determined using electron probe microanalysis and high-energy X-ray diffraction. The carbon profile and carbides mass fractions were also predicted using a thermodynamic and kinetic modeling tool (DICTRA). At 600 °C, the experimental results and predictions suggested that the carbon absorbed by the sample was mainly trapped to form M23C6 and M7C3 carbides. The residual stress profile in austenite was strongly dependent on the M23C6 precipitation and the induced modification of the substrate chemical composition. At 500 °C, results and predictions suggested that the carbon was mainly dissolved in austenite. The residual stress profile was governed by the formation of expanded austenite at the sample surface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    F. Rouillard and M. Romedenne, Etat de l’art sur l’interaction B4C—acier de gaine et loi de durée de vie des gaines des éléments absorbants, NT DPC/SCCME 17-789-A 2017 (2017).

  2. 2.

    F. Rouillard, Influence de la carburation sur le comportement mécanique des aciers: Données d’entrée pour la loi de durée de vie des gaines des Eléments Absorbants et Réflexions, NT DPC/SCCME 18-872-A (2017).

  3. 3.

    A. Thorley and C. Tyzack, in British Nuclear Energy Society, Conference Proceedings (1971).

  4. 4.

    Y. Peng, Z. Liu, Y. Jiang, B. Wang, J. Gong, and M. A. J. Somers, Scripta Materialia 157, 106 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    T. Christiansen and M. A. J. Somers, Metallurgical and Materials Transactions A 40A, 1791 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    M. Romedenne, F. Rouillard, B. Duprey, D. Hamon, M. Tabarant, and D. Monceau, Oxidation of Metals 87, 643 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    M. Romedenne, Thèse de doctorat de l’Université de Toulouse (2018).

  8. 8.

    M. Romedenne, F. Rouillard, D. Hamon, B. Malard, and D. Monceau, Corrosion Science 159, 108147 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    J. Kieffer and D. Karkoulis, Journal of Physics: Conference Series 425, 202012 (2013).

    Google Scholar 

  10. 10.

    L. Lutterotti, S. Matthies, and H. R. Wenk, in Proceeding of the 12th International Conference on Textures of Materials (ICOTOM-12), Vol. 1 (1999), p. 1599.

  11. 11.

    G. Geandier, L. Vautrot, B. Denand, and S. Denis, Materials 11, 1415 (2018).

    Article  Google Scholar 

  12. 12.

    V. Hauk, (Elsevier, Amsterdam, 1997).

  13. 13.

    I. Noyan and J. Cohen, (Springer Verlag, New York, 1987).

  14. 14.

    H. Kahn, G. M. Michal, F. Ernst, and A. H. Heuer, Metallurgical and Materials Transactions A 40A, 1799 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    D. J. Dyson and B. Holmes, Journal of the Iron and Steel Institute 208, 469 (1970).

    CAS  Google Scholar 

  16. 16.

    A. Engström, L. Höglund, and J. Ågren, Metallurgical and Materials Transactions A 25, 1127 (1994).

    Article  Google Scholar 

  17. 17.

    T. Turpin, J. Dulcy, and M. Gantois, Metallurgical and Materials Transactions A 36, 2751 (2005).

    Article  Google Scholar 

  18. 18.

    C. Sudha, N. S. Bharasi, R. Anand, H. Shaikh, R. Dayal, and M. Vijayalakshmi, Journal of Nuclear Materials 402, 186 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    J. Garcia and O. Prat, Applied Surface Science 257, 8894 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    D. Rong, J. Gong, and Y. Jiang, Procedia Engineering 130, 676 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    T. L. Christiansen, K. Stahl, B. K. Brink, and M. A. J. Somers, Steel Research International 87, 1935 (2016).

    Article  Google Scholar 

  22. 22.

    H. J. Christ, Materials and Corrosion 49, 258 (1998).

    CAS  Article  Google Scholar 

  23. 23.

    S. I. Ford, P. R. Munroe, and D. J. Young, in John Stringer Symposium on High Temperature Corrosion, eds. P. F. Tortorelli, I. G. Wright, and P. Y. Hou (ASM International, 2003), pp. 77–85.

  24. 24.

    Y. Gong, D. J. Young, C. Atkinson, T. Olszewski, W. J. Quadakkers, and R. C. Reed, Corrosion Science 173, 108699 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    H. Wen, B. Zhao, X. Dong, F. Sun, and L. Zhang, Materials Letters 261, 126984 (2020).

    CAS  Article  Google Scholar 

  26. 26.

    Z. Ding, B. Liang, Z. Xu, and L. Dong, American Chemical Society Applied Materials and Interfaces 12, 19235 (2020).

    CAS  Article  Google Scholar 

  27. 27.

    Y. Sun, X. Li, and T. Bell, Materials Science and Technology 15, 1171 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Y. Cao, F. Ernest, and G. M. Michal, Acta Materialia 51, 4171 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    F. Ernst, Y. Cao, and G. M. Michal, Acta Materialia 52, 1469 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    T. L. Christiansen, T. S. Hummelshoj, and M. A. J. Somers, Surface Engineering 26, 242 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    G. M. Michal, F. Ernst, H. Kahn, Y. Cao, F. Oba, N. Agarwal, and A. H. Heuer, Acta Materialia 54, 1597 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    LabEx DAMAS. Available online: http://labex-damas.univ-lorraine.fr.

Download references

Acknowledgements

The authors gratefully acknowledge the Deutsches Elektronen-Synchrotron (DESY-Petra III, Hamburg, Germany) for provision of beamtime at the PETRA P07-EH2 beamline.

Funding

This work was supported by the French Alternative Energies and Atomic Energy Commission and the French State through the program “Investment in the future” operated by the National Research Agency (ANR) and referenced by ANR-11-LABX-0008-01 [32].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Fares Slim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Slim, M.F., Geandier, G., Romedenne, M. et al. Carburization and Stress Profiles Characterized by High-Energy X-ray Diffraction in 316L Austenitic Stainless Steel After Exposure at 500 °C and 600 °C in Carburizing Liquid Sodium. Oxid Met 96, 185–199 (2021). https://doi.org/10.1007/s11085-021-10039-6

Download citation

Keywords

  • Carburization
  • Austenitic stainless steel
  • High-energy X-ray diffraction
  • Residual stress tensor