Skip to main content
Log in

Effect of Chloride Impurity on Corrosion Kinetics of Stainless Steels in Molten Solar Salt for CSP Application: Experiments and Modeling

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Solar salt (60 wt% NaNO3 + 40 wt% KNO3) is widely used in the storage system of concentrated solar power plant. However, the chloride within the molten solar salt can affect the corrosion kinetics of stainless steels and hence affect the overall structural integrity. In this work, the corrosion behavior of 304 and 316L stainless steel (SS) in molten solar salt mixtures with different chloride impurities were investigated by immersion tests at 565 °C. Results show that as the content of chloride in the solar salt increases (up to 1.4 wt%), both 304 and 316L SS keep parabolic corrosion kinetics, and the rate constants increase. In comparison with 304 SS, the better corrosion resistance of 316L SS is ascribed to the higher thickness ratio of FeCr2O4 spinel to oxide scale. In addition, to quantitatively describe the effect of chloride impurity on corrosion kinetics of stainless steels, a novel theoretical model based on Fick’s first law is proposed and validated by the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. P. G. Márquez, A. Karyotakis, and M. Papaelias, Renewable energies: business outlook 2050, (Springer, Berlin, 2018).

    Book  Google Scholar 

  2. T. E. Boukelia, A. Ghellab, A. Laouafi, A. Bouraoui, and Y. Kabar, Cooling performances time series of CSP plants: calculation and analysis using regression and ANN models. Renewable Energy 157, 2020 (809–827).

    Article  Google Scholar 

  3. W. Gregory, Liquid Metal Based High Temperature Concentrated Solar Power: Cost Considerations. Diss. (Georgia Institute of Technology, 2016).

  4. M. Kasra and H. Khorasanizadeh, The potential and deployment viability of concentrated solar power (CSP) in Iran. Energy Strategy Reviews 24, 2019 (358–369).

    Article  Google Scholar 

  5. C. Emiliano, F. Casella, and P. Colonna, Design of CSP plants with optimally operated thermal storage. Solar Energy 116, 2015 (371–387).

    Article  Google Scholar 

  6. P. Ugo, L. Luo, Y. Fan, D. Stitou, and M. Rood, Thermal energy storage systems for concentrated solar power plants. Renewable Sustainable Energy Reviews 79, 2017 (82–100).

    Article  Google Scholar 

  7. A. G. Fernández, M. Fullana, L. Calabrese, V. Palomba, A. Frazzica, and L. F. Cabeza, Corrosion assessment of promising hydrated salts as sorption materials for thermal energy storage systems. Renewable Energy 150, 2020 (428–434).

    Article  Google Scholar 

  8. A. Bonk, C. Martin, M. Braun, T. Bauer, Material investigations on the thermal stability of solar salt and potential filler materials for molten salt storage, in AIP Conference Proceedings, Vol. 1850 (2017), No. 1, p. 080008.

  9. A. Bonk, S. Sau, N. Uranga, M. Hernaiz, and T. Bauer, Advanced heat transfer fluids for direct molten salt line-focusing CSP plants. Progress in Energy and Combustion Science 67, 2018 (69–87).

    Article  Google Scholar 

  10. R. I. Olivares, The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres. Solar Energy 86, (9), 2012 (2576–2583).

    Article  CAS  Google Scholar 

  11. D. Kearney, U. Herrmann, P. Nava, B. Kelly, R. Mahoney, J. Pacheco, et al., Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. Journal of Solar Energy Engineering 125, (2), 2003 (170–176).

    Article  CAS  Google Scholar 

  12. K. Vignarooban, X. Xu, A. Arvay, K. Hsu, and A. M. Kannan, Heat transfer fluids for concentrating solar power systems—a review. Applied Energy 146, 2015 (383–396).

    Article  CAS  Google Scholar 

  13. D. A. Nissen and D. E. Meeker, Nitrate/nitrite chemistry in sodium nitrate-potassium nitrate melts. Inorganic Chemistry 22, (5), 1983 (716–721).

    Article  CAS  Google Scholar 

  14. C. Villada, A. Bonk, T. Bauer, and F. Bolívar, High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres. Applied Energy 226, 2018 (107–115).

    Article  CAS  Google Scholar 

  15. R. W. Bradshaw and D. E. Meeker, High-temperature stability of ternary nitrate molten salts for solar thermal energy systems. Solar Energy Material and Solar Cell 21, (1), 1990 (51–60).

    Article  CAS  Google Scholar 

  16. K. H. Stern, High temperature properties and decomposition of inorganic salts part 3, nitrates and nitrites. Journal of Physical and Chemical Reference Data 1, (3), 1972 (747–772).

    Article  Google Scholar 

  17. Q. Peng, X. Wei, J. Ding, J. Yang, and X. Yang, High—temperature thermal stability of molten salt materials. International Journal of Energy Research 32, (12), 2008 (1164–1174).

    Article  CAS  Google Scholar 

  18. X. Wei, Y. Wang, Q. Peng, J. Yang, X. Yang, and J. Ding, NOx emissions and NO2-formation in thermal energy storage process of binary molten nitrate salts. Energy 74, 2014 (215–221).

    Article  CAS  Google Scholar 

  19. V. A. Sötz, A. Bonk, J. Steinbrecher, and T. Bauer, Defined purge gas composition stabilizes molten nitrate salt-experimental prove and thermodynamic calculations. Solar Energy 211, 2020 (453–462).

    Article  Google Scholar 

  20. A. Baraka, A. I. Abdel-Rohman, and A. E. Hosary, Corrosion of mild steel in molten sodium nitrate–potassium nitrate eutectic. British Corrosion Journal 11, (1), 1976 (44–46).

    Article  CAS  Google Scholar 

  21. M. Zhu, S. Zeng, H. Zhang, J. Li, and B. Cao, Electrochemical study on the corrosion behaviors of 316 SS in HITEC molten salt at different temperatures. Solar Energy Materials and Solar Cells 186, 2018 (200–207).

    Article  CAS  Google Scholar 

  22. R. W. Bradshaw, S. H. Goods, Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts. No. SAND2001-8518. (SANDIA National Laboratories, 2001).

  23. A. G. Fernández, M. I. Lasanta, and F. J. Pérez, Molten salt corrosion of stainless steels and low-Cr steel in CSP plants. Oxidation of Metals 78, (5–6), 2012 (329–348).

    Article  Google Scholar 

  24. A. Kruizenga and D. Gill, Corrosion of iron stainless steels in molten nitrate salt. Energy Procedia 49, 2014 (878–887).

    Article  CAS  Google Scholar 

  25. R. W. Bradshaw, W. M. Clift, Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel. Sandia report (2010).

  26. W. Magdalena, F. Pineda, A. G. Fernández, C. Mata-Torres, and R. A. Escobar, Materials corrosion for thermal energy storage systems in concentrated solar power plants. Renewable Sustainable Energy Reviews 86, 2018 (22–44).

    Article  Google Scholar 

  27. S. Bell, T. Steinberg, and G. Will, Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power. Renewable Sustainable Energy Reviews 114, 2019 (109328).

    Article  Google Scholar 

  28. J. Zhang, Y. LeYann, A systematic comparison of supercritical CO2 Brayton cycle layouts for concentrated solar power with a focus on thermal energy storage utilization, in 3rd European Conference on Supercritical CO2 (sCO2) Power Systems 2019, 19th–20th September 2019, p. 105–115.

  29. A. G. Fernández and L. F. Cabeza, Molten salt corrosion mechanisms of nitrate based thermal energy storage materials for concentrated solar power plants: a review. Solar Energy Materials and Solar Cells 194, 2019 (160–165).

    Article  Google Scholar 

  30. M. T. Islam, N. Huda, and R. Saidur, Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia. Renewable Energy 140, 2019 (789–806).

    Article  Google Scholar 

  31. R. Moore, M. Vernon, C. K. Ho, N. P. Siegel, G. Kolb, Design considerations for concentrating solar power tower systems employing molten salt, Sandia National Laboratories report: SAND2010-6978 (2010).

  32. M. Papaelias, L. Cheng, M. Kogia, A. Mohimi, V. Kappatos, C. Selcu, L. Constantinou, M. Gómez, Q. Carlos, M. Garcia, P. Fausto, and T. H. Gan, Inspection and structural health monitoring techniques for concentrated solar power plants. Renewable Energy 85, 2016 (1178–1191).

    Article  Google Scholar 

  33. S. H. Goods, R. W. Bradshaw, M. R. Prairie, J. M. Chavez, Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates, No. SAND-94-8211. Sandia National Labs., Livermore, CA (United States) (1994).

  34. A. S. Dorcheh, R. N. Durham, and M. C. Galetz, High temperature corrosion in molten solar salt: the role of chloride impurities. Materials and Corrosion 68, (9), 2017 (943–951).

    Article  CAS  Google Scholar 

  35. A. Gomes, M. Navas, N. Uranga, T. Paiva, I. Figueira, and T. C. Diamantino, High-temperature corrosion performance of austenitic stainless steels type AISI 316L and AISI 321H, in molten Solar Salt. Solar Energy 177, 2019 (408–419).

    Article  CAS  Google Scholar 

  36. A. Bonk, D. Rückle, S. Kaesche, M. Braun, and T. Bauer, Impact of Solar Salt aging on corrosion of martensitic and austenitic steel for concentrating solar power plants. Solar Energy Materials and Solar Cells 203, 2019 (110162).

    Article  CAS  Google Scholar 

  37. D. Fähsing, C. Oskay, T. M. Meißner, and M. C. Galetz, Corrosion testing of diffusion-coated steel in molten salt for concentrated solar power tower systems. Surface and Coatings Technology 354, 2018 (46–55).

    Article  Google Scholar 

  38. C. Prieto, J. Gallardo-González, F. J. Ruiz-Cabañas, C. Barreneche, M. Martínez, M. Segarra, and A. I. Fernández, Study of corrosion by Dynamic Gravimetric Analysis (DGA) methodology. Influence of chloride content in solar salt. Solar Energy Materials and Solar Cells 157, 2016 (526–532).

    Article  CAS  Google Scholar 

  39. American Society for Testing and Materials (Filadelfia, Pennsylvania), ASTM G1-03: Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. (ASTM, 2004).

  40. W. J. Tobler and S. Virtanen, Effect of Mo species on metastable pitting of Fe18Cr alloys—a current transient analysis. Corrosion Science 48, (7), 2016 (1585–1607).

    Article  Google Scholar 

  41. C. R. Clayton and Y. C. Lu, A bipolar model of the passivity of stainless steel: the role of Mo addition. Journal of the Electrochemical Society 133, (12), 1986 (2465).

    Article  CAS  Google Scholar 

  42. W. D. Robertson, Molybdate and tungstate as corrosion inhibitors and the mechanism of inhibition. Journal of the Electrochemical Society 98, (3), 1951 (94).

    Article  CAS  Google Scholar 

  43. A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and E. J. C. S. Matykina, Pitting corrosion behaviour of austenitic stainless steels–combining effects of Mn and Mo additions. Corrosion Science 50, (6), 2008 (1796–1806).

    Article  CAS  Google Scholar 

  44. A. S. Dorcheh, R. N. Durham, and M. C. Galetz, Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600 C. Solar Energy Materials and Solar Cells 144, 2016 (109–116).

    Article  Google Scholar 

  45. K. L. Summers and D. Chidambaram, Corrosion behavior of structural materials for potential use in nitrate salts based solar thermal power plants. Journal of The Electrochemical Society 164, (8), 2017 (H5357).

    Article  CAS  Google Scholar 

  46. H. J. Grabke, E. Reese, and M. Spiegel, The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits. Corrosion Science 37, (7), 1995 (1023–1043).

    Article  CAS  Google Scholar 

  47. A. Palacios, M. E. Navarro, Z. Jiang, A. Avila, G. Qiao, E. Mura, and Y. Ding, High-temperature corrosion behaviour of metal alloys in commercial molten salts. Solar Energy 201, 2020 (437–452).

    Article  CAS  Google Scholar 

  48. G. Y. Lai, High temperature corrosion of engineering alloys. United States: N. P. (1990).

  49. D. A. Tillman, D. Dao, and M. Bruce, Chlorine in solid fuels fired in pulverized fuel boilers-sources, forms, reactions, and consequences: a literature review. Energy Fuels 23, (7), 2009 (3379–3391).

    Article  CAS  Google Scholar 

  50. A. Zahs, M. Spiegel, and H. Grabke, The influence of alloying elements on the chlorine—induced high temperature corrosion of Fe–Cr alloys in oxidizing atmospheres. Materials and Corrosion 50, (10), 1999 (561–578).

    Article  CAS  Google Scholar 

  51. S. Enestam, D. Bankiewicz, J. Tuiremo, K. Mäkelä, and M. Hupa, Are NaCl and KCl equally corrosive on superheater materials of steam boilers? Fuel. 104, 2013 (294–306).

    Article  CAS  Google Scholar 

  52. N. Perez, Electrochemistry and Corrosion Science, (Kluwer Academic Publishers, Boston, 2004).

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 51905261), Natural Science Foundation of Jiangsu Province (No. BK20190678), National Key R&D Program of China (No. 2018YFC0808800) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_1003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqun Tang or Jianming Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yang, X., Yin, X. et al. Effect of Chloride Impurity on Corrosion Kinetics of Stainless Steels in Molten Solar Salt for CSP Application: Experiments and Modeling. Oxid Met 95, 311–332 (2021). https://doi.org/10.1007/s11085-021-10025-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10025-y

Keywords

Navigation