Skip to main content
Log in

The Cyclic Hot Corrosion Behavior of Pt–Al–7%YSZ Coating

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In this study, the microstructure and cyclic oxidation of Pt–Al–7%YSZ thermal barrier coating applied on Rene-80 superalloy were investigated after Type I hot corrosion. The field emission scanning electron microscope and X-ray diffraction were used to evaluate the microstructure and phase identification, respectively. Na2SO4 was added to the surface of the coating for hot corrosion tests. The tests were carried out by the repeated cycles of heating at 900 °C for 30 and 60 min and rapid cooling to 400 °C in 10 min. Before the cyclic hot corrosion test, the specimens were coated with the platinum electroplating, high-activity low-temperature aluminizing, and the thermal spray of 7% yttria-stabilized zirconia (YSZ), respectively. The results showed that the cyclic hot corrosion mechanisms were the basic fluxing of primary thermally grown oxide (TGO), the formation of chromia, spinel and nickel oxides (C.S.N oxides) and Ni–Cr perovskites on the oxide scale. The type I cyclic hot corrosion resistance of Pt–Al–7%YSZ coating decreased with the number of thermal cycles due to a decrease in Al, an increase in Cr concentration, and increase in the volume fraction of C.S.N oxides and Ni–Cr perovskites in the oxide scale. As the number of thermal cycles increased, the oxide scale growth stresses and thermal mismatch stresses increased, leading to TBC degradation by the rumpling and ratcheting mechanisms in the Pt–Al/TGO interface. However, in lower thermal cycles, internal hot corrosion, and the formation of Kirkendall pores at the substrate/Pt–Al interface caused TBC degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Safari and S. Nategh, Materials Science and Engineering A 499, 445 (2009).

    Google Scholar 

  2. B. Salehnasab, E. Poursaeidi, S. A. Mortazavi, and G. H. Farokhian, Engineering Failure Analysis 60, 316 (2016).

    CAS  Google Scholar 

  3. R. A. Rapp and Y. S. Zhang, JOM 46, 47 (1994).

    CAS  Google Scholar 

  4. A. Jalowicka, W. Nowak, D. Naumenko, L. Singheiser, and W. J. Quadakkers, Materials and Corrosion 65, 178 (2014).

    CAS  Google Scholar 

  5. F. Pettit, Oxidation of Metals 76, 1 (2011).

    CAS  Google Scholar 

  6. R. A. Rapp, Corrosion Science 44, 209 (2002).

    CAS  Google Scholar 

  7. X. Chen, Y. Zhao, L. Gu, B. Zou, Y. Wang, and X. Cao, Corrosion Science 53, 2335 (2011).

    CAS  Google Scholar 

  8. Z. Xu, J. Dai, J. Niu, N. Li, G. Huang, and L. He, Journal of Alloys and Compounds 617, 185 (2014).

    CAS  Google Scholar 

  9. Z. Xu, Z. Wang, G. Huang, R. Mu, and L. He, Journal of Alloys and Compounds 651, 445 (2015).

    CAS  Google Scholar 

  10. D. K. Das, Progress in Materials Science. 58, 151 (2013).

    CAS  Google Scholar 

  11. R. A. Pidani, R. S. Razavi, R. Mozafarinia, and H. Jamali, Ceramics International 38, 6613 (2012).

    Google Scholar 

  12. A. Afrasiabi, M. Saremi, and A. Kobayashi, Materials Science and Engineering A 478, 264 (2008).

    Google Scholar 

  13. Z. Chen, N. Q. Wu, J. Singh, and S. X. Mao, Thin Solid Films 443, 46 (2003).

    CAS  Google Scholar 

  14. B. A. Pint and K. L. More, Journal of Materials Science 44, 1676 (2009).

    CAS  Google Scholar 

  15. R. T. Wu, X. Wang, and A. Atkinson, Acta Materialia 58, 5578 (2010).

    CAS  Google Scholar 

  16. A. Rabiei and A. G. Evans, Acta Materialia 48, 3963 (2000).

    CAS  Google Scholar 

  17. C. H. Lee, H. K. Kim, H. S. Choi, and H. S. Ahn, Surface and Coatings Technology 124, 1 (2000).

    CAS  Google Scholar 

  18. I. N. Qureshi, M. Shahid, and A. N. Khan, Journal of Thermal Spray Technology 25, 567 (2016).

    CAS  Google Scholar 

  19. W. R. Chen, X. Wu, B. R. Marple, and P. C. Patnaik, Surface and Coatings Technology 197, 109 (2005).

    CAS  Google Scholar 

  20. H. Huang, C. Liu, L. Ni, and C. Zhou, Corrosion Science. 53, 1369 (2011).

    CAS  Google Scholar 

  21. J. Sun, Q. G. Fu, G. N. Liu, H. J. Li, Y. C. Shu, and G. Fan, Ceramics International 41, 9972 (2015).

    CAS  Google Scholar 

  22. G. M. Kim, N. M. Yanar, E. N. Hewitt, F. S. Pettit, and G. H. Meier, Scripta Materialia 46, 489 (2002).

    CAS  Google Scholar 

  23. N. M. Yanar, F. S. Pettit, and G. H. Meier, Metallurgical and Materials Transactions A 37A, 1563 (2006).

    CAS  Google Scholar 

  24. M. Yavorska and J. Sieniawski, Archives of Materials Science and Engineering 45, 56 (2010).

    Google Scholar 

  25. D. K. Das, V. Singh, and S. V. Joshi, Oxidation of Metals 57, 245 (2002).

    CAS  Google Scholar 

  26. A. Rabieifar, S. Nategh, M. R. Afshar, and H. R. Najafi, Materials Research Express 7, 016575 (2020).

    CAS  Google Scholar 

  27. K. Shirvani, S. Mastali, A. Rashidghamat, and H. Abdollahpour, Corrosion Science 75, 142 (2013).

    CAS  Google Scholar 

  28. W. R. Chen, X. Wu, D. Dudzinski, and P. C. Patnaik, Surface and Coatings Technology 200, 5863 (2006).

    CAS  Google Scholar 

  29. R. Nicholls, K. J. Lawson, A. Johnstone, and D. S. Rickerby, Surface and Coatings Technology 151–152, 383 (2002).

    Google Scholar 

  30. H. B. Guo, R. Vaßen, and D. Stöver, Surface and Coatings Technology 186, 353 (2004).

    CAS  Google Scholar 

  31. T. Beck, R. Herzog, O. Trunova, M. Offermann, and R. W. Steinbrech, Surface and Coatings Technology. 202, 5901 (2008).

    CAS  Google Scholar 

  32. A. M. Huntz, Materials Science and Engineering: A 201, 211 (1995).

    Google Scholar 

  33. C. T. Liu, J. Ma, X. F. Sun, and P. C. Zhao, Surface and Coatings Technology 204, 3641 (2010).

    CAS  Google Scholar 

  34. H. Dong, G. J. Yang, H. N. Cai, C. X. Li, and C. J. Li, Ceramics International 41, 3481 (2015).

    CAS  Google Scholar 

  35. M. Zafir Alam, N. Hazari, V. K. Varma, and D. K. Das, Metallurgical and Materials Transactions A 42A, 4064 (2011).

    Google Scholar 

  36. K. A. Marino and E. A. Carter, Acta Materialia 58, 2726 (2010).

    CAS  Google Scholar 

  37. S. Hayashi, W. Wang, D. J. Sordelet, and B. Glesson, Metallurgical and Materials Transactions A 36A, 1769 (2005).

    CAS  Google Scholar 

  38. M. Madhwal, E. H. Jordan, and M. Gell, Materials Science and Engineering A 384, 151 (2004).

    Google Scholar 

  39. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, Progress in Materials Science 46, 505 (2001).

    Google Scholar 

  40. J. Angenete and K. Stiller, Surface and Coatings Technology 150, 107 (2002).

    CAS  Google Scholar 

  41. G. C. Fryburg, F. J. Kohl, and C. A. Stearns, Journal of The Electrochanical Society 131, 2958 (1984).

    Google Scholar 

  42. C. Leyens, B. A. Pint, and I. G. Wright, Surface and Coatings Technology 133, 15 (2000).

    Google Scholar 

  43. G. Y. Liang, C. Zhu, X. Y. Wu, and Y. Wu, Applied Surface Science 257, 6468 (2011).

    CAS  Google Scholar 

  44. L. Hui, L. Yuping, Z. Caili, et al., Computational Materials Science 78, 116 (2013).

    CAS  Google Scholar 

  45. K. Shirvani, S. Firouzi, and A. Rashidghamat, Corrosion Science 55, 378 (2012).

    CAS  Google Scholar 

  46. N. Vialas and D. Monceau, Oxidation of Metals 66, 155 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Afshar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabieifar, A., Nategh, S., Afshar, M.R. et al. The Cyclic Hot Corrosion Behavior of Pt–Al–7%YSZ Coating. Oxid Met 94, 549–567 (2020). https://doi.org/10.1007/s11085-020-10006-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-10006-7

Keywords

Navigation