Skip to main content
Log in

Impact of Selective Laser Melting Additive Manufacturing on the High Temperature Behavior of AISI 316L Austenitic Stainless Steel

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Additive manufacturing allows production of complex geometries or customized designs that are difficult or impossible to fabricate by conventional means. However, these components have hardly ever been tested in severe conditions corresponding to real functioning at high temperature. The high temperature oxidation of AISI 316L stainless steel additively manufactured by selective laser melting (SLM) has been studied for 100 h at temperatures between 700 and 1000 °C in dry air and compared to that of wrought samples. Thermogravimetric analyses showed slower kinetics for SLM samples than for conventional coupons. In addition, SLM samples exhibit parabolic kinetics for all the studied temperatures, while conventional coupons present complete laws above 800 °C. Parabolic constant rate determined for 900 °C oxidation is one order of magnitude lower for SLM samples (1.73·10−13 g2 cm−4 s−1) than for wrought coupons (1.54·10−12 g2 cm−4 s−1). The resulting activation energy values confirm the better behavior of SLM alloys, in agreement with the formation at their surface of protective chromia Cr2O3. In contrast, additional formation of non-protective iron oxides was observed above 800 °C for the wrought samples. The different behavior could be explained by Cr depletion at the surface of conventional alloy, whereas Cr supply was still insured in the case of SLM material.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code Availability

Not applicable.

References

  1. W. M. Tucho, V. H. Lysne, H. Austbø, A. Sjolyst-Kverneland and V. Hansen, Journal of Alloys and Compounds 740, 2018 (910).

    CAS  Google Scholar 

  2. T. DebRoy, H. L. Wei, J. S. Zuback, et al., Progress in Materials Science 92, 2018 (112).

    CAS  Google Scholar 

  3. S. Singh, S. Ramakrishna and R. Singh, Journal of Manufacturing Processes 25, 2017 (185).

    Google Scholar 

  4. Z. Sun, X. Tan, S. B. Tor and W. Y. Yeong, Materials and Design 104, 2016 (197).

    CAS  Google Scholar 

  5. R. Casati, J. Lemke and M. Vedani, Journal of Materials Science and Technology 32, 2016 (738).

    CAS  Google Scholar 

  6. F. Bartolomeu, M. Buciumeanu, E. Pinto, et al., Additive Manufacturing 16, 2017 (81).

    CAS  Google Scholar 

  7. E. Liverani, S. Toschi, L. Ceschini and A. Fortunato, Journal of Materials Processing Technology 249, 2017 (255).

    CAS  Google Scholar 

  8. J. Suryawanshi, K. G. Prashanth and U. Ramamurty, Materials Science and Engineering: A 696, 2017 (113).

    CAS  Google Scholar 

  9. D. Wang, C. Song, Y. Yang and Y. Bai, Materials and Design 100, 2016 (291).

    CAS  Google Scholar 

  10. M. S. F. de Lima and S. Sankaré, Materials and Design 55, 2014 (526).

    Google Scholar 

  11. M. Terner, S. Biamino, G. Baudana, et al., Journal of Materials Engineering and Performance 24, 2015 (3982).

    CAS  Google Scholar 

  12. Y. Zhou, S. F. Wen, B. Song, et al., Materials and Design 89, 2016 (1199).

    CAS  Google Scholar 

  13. R. W. Bush and C. A. Brice, Materials Science and Engineering: A 554, 2012 (12).

    CAS  Google Scholar 

  14. A. Casadebaigt, J. Hugues and D. Monceau, Oxidation of Metals 90, 2018 (633).

    CAS  Google Scholar 

  15. Q. Jia and D. Gu, Optics and Laser Technology 62, 2014 (161).

    CAS  Google Scholar 

  16. C. Juillet, A. Oudriss, J. Balmain, X. Feaugas and F. Pedraza, Corrosion Science 142, 2018 (266).

    CAS  Google Scholar 

  17. Z. Min, S. N. Parbat, L. Yang, B. Kang and M. K. Chyu, Journal of Engineering for Gas Turbines and Power 140, 2018 (062101).

    Google Scholar 

  18. T. Sanviemvongsak, D. Monceau and B. Macquaire, Corrosion Science 141, 2018 (127).

    CAS  Google Scholar 

  19. M. C. Kuner, M. Romedenne, P. Fernandez-Zelaia and S. Dryepondt, Additive Manufacturing 36, 2020 (101431).

    Google Scholar 

  20. M. Romedenne, R. Pillai, M. Kirka and S. Dryepondt, Corrosion Science 171, 2020 (108647).

    CAS  Google Scholar 

  21. R. Łyszkowski, Materials 8, 2015 (1499).

    Google Scholar 

  22. T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka and E. Chlebus, Materials Science and Engineering: A 718, 2018 (64).

    CAS  Google Scholar 

  23. K. Saeidi, X. Gao, Y. Zhong and Z. J. Shen, Materials Science and Engineering: A 625, 2015 (221).

    CAS  Google Scholar 

  24. K. Saeidi, L. Kvetková, F. Lofaj and Z. Shen, RSC Advances 5, 2015 (20747).

    CAS  Google Scholar 

  25. B. Zhang, L. Dembinski and C. Coddet, Materials Science and Engineering: A 584, 2013 (21).

    CAS  Google Scholar 

  26. Y. Zhong, L. Liu, S. Wikman, D. Cui and Z. Shen, Journal of Nuclear Materials 470, 2016 (170).

    CAS  Google Scholar 

  27. H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff and C. Issartel, Journal of Materials Science 43, 2008 (6960).

    CAS  Google Scholar 

  28. H. Buscail, S. El Messki, F. Riffard, S. Perrier and C. Issartel, Oxidation of Metals 75, 2011 (27).

    CAS  Google Scholar 

  29. H. Buscail, S. E. Messki, F. Riffard, et al., Materials Chemistry and Physics 111, 2008 (491).

    CAS  Google Scholar 

  30. E. Frutos, P. Adeva, J. L. González-Carrasco and P. Pérez, Surface and Coatings Technology 236, 2013 (188).

    CAS  Google Scholar 

  31. S. Benafia, D. Retraint, S. Yapi Brou, B. Panicaud and J. L. Grosseau Poussard, Corrosion Science 136, 2018 (188).

    CAS  Google Scholar 

  32. M. Ziomek-Moroz, B. S. Covino, S. D. Cramer, et al., in Proceedings of the 29th International Technical Conference on Coal Utilization and Fuel Systems (Clerwater, United States, 2004).

  33. M. Ziomek-Moroz, B. S. Covino, G. R. Holcomb, et al., in Proceedings of Fuel Cells: Materials, Processing, and Manufacturing Technologies Symposium Held at ASM Materials Solution Conference (Pittsburgh, PA, United States, 2003).

  34. G. R. Holcomb, M. Ziomek-Moroz, S. D. Cramer, B. S. Covino and S. J. Bullard, Journal of Materials Engineering and Performance 15, 2006 (404).

    CAS  Google Scholar 

  35. S. Molin, M. Gazda, B. Kusz and P. Jasinski, Journal of the European Ceramic Society 29, 2009 (757).

    CAS  Google Scholar 

  36. A. V. C. Sobral, C. V. Franco, M. P. Hierro, F. J. Pérez and W. Ristow Jr., Materials and Corrosion 51, 2000 (791).

    CAS  Google Scholar 

  37. A. Bautista, F. Velasco, M. Campos, M. E. Rabanal and J. M. Torralba, Oxidation of Metals 59, 2003 (373).

    CAS  Google Scholar 

  38. C. Ciszak, I. Popa, J.-M. Brossard, D. Monceau and S. Chevalier, Corrosion Science 110, 2016 (91).

    CAS  Google Scholar 

  39. D. Monceau and B. Pieraggi, Oxidation of Metals 50, 1998 (477).

    CAS  Google Scholar 

  40. J. W. Bray, ASM Handbook 2, (1990).

  41. K. P. Lillerud and P. Kofstad, Journal of The Electrochemical Society 127, 1980 (2397).

    CAS  Google Scholar 

  42. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 1992 (81).

    CAS  Google Scholar 

  43. R. Sachitanand, M. Sattari, J.-E. Svensson and J. Froitzheim, International Journal of Hydrogen Energy 38, 2013 (15328).

    CAS  Google Scholar 

  44. B. Hua, Y. Kong, W. Zhang, J. Pu, B. Chi and L. Jian, Journal of Power Sources 196, 2011 (7627).

    CAS  Google Scholar 

  45. S. Chevalier, Traitements de surface et nouveaux matériaux: quelles sont les solutions pour lutter contre la dégradation des matériaux à haute température?, (Editions de l’Université de Dijon, Dijon, 2007).

    Google Scholar 

  46. A. Col, V. Parry and C. Pascal, Corrosion Science 114, 2017 (17).

    CAS  Google Scholar 

  47. S. Pour-Ali, M. Weiser, N. T. Nguyen, A. Kiani-Rashid, A. Babakhani and S. Virtanen, Corrosion Science 163, 2019 (108282).

    Google Scholar 

  48. P. Jian, L. Jian, H. Bing and G. Xie, Journal of Power Sources 158, 2006 (354).

    CAS  Google Scholar 

  49. Z. Yang, G.-G. Xia, C.-M. Wang, et al., Journal of Power Sources 183, 2008 (660).

    CAS  Google Scholar 

  50. P. I. Williams and R. G. Faulkner, Journal of Materials Science 22, 1987 (3537).

    CAS  Google Scholar 

  51. Z. Tőkei, K. Hennesen, H. Viefhaus and H. J. Grabke, Materials Science and Technology 16, 2000 (1129).

    Google Scholar 

  52. T. Jonsson, S. Karlsson, H. Hooshyar, et al., Oxidation of Metals 85, 2016 (509).

    CAS  Google Scholar 

  53. H. Sun, Q. He, Z. Zhou, M. Wang, G. Zhang and S. Li, Journal of Iron and Steel Research International 23, 2016 (393).

    Google Scholar 

  54. H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 1999 (379).

    CAS  Google Scholar 

  55. Y. M. Wang, T. Voisin, J. T. McKeown, et al., Nature Materials 17, 2018 (63).

    CAS  Google Scholar 

  56. H. J. Grabke and J. Woltersdorf, Oxidation of Metals 50, 1998 (241).

    CAS  Google Scholar 

  57. M. R. Ardigo-Besnard, I. Popa, O. Heintz, et al., Applied Surface Science 412, 2017 (196).

    CAS  Google Scholar 

  58. D. Raabe, in Physical Metallurgy (Fifth Edition) (Elsevier, Oxford, 2014), p. 2291.

  59. A. F. Smith, Metal Science 9, 1975 (375).

    Google Scholar 

  60. Y. Madi, E. Salhi, F. Charlot, A. Galerie and Y. Wouters, Oxidation of Metals 75, 2011 (167).

    CAS  Google Scholar 

  61. J. Yuan, X. Wu, W. Wang, S. Zhu and F. Wang, Oxidation of Metals 79, 2013 (541).

    CAS  Google Scholar 

  62. S. Baleix, G. Bernhart and P. Lours, Materials Science and Engineering: A 327, 2002 (155).

    Google Scholar 

  63. R. A. Perkins, Metallurgical Transactions 4, 1973 (2535).

    CAS  Google Scholar 

  64. H. S. Daruvala and K. R. Bube, Journal of Nuclear Materials 87, 1979 (211).

    CAS  Google Scholar 

  65. H. Nickel, Y. Wouters, M. Thiele and W. J. Quadakkers, Fresenius Journal of Analytical Chemistry 361, 1998 (540).

    CAS  Google Scholar 

  66. I. Popa, in French Activity on High Temperature Corrosion in Water Vapor (Trans Tech Publications, 2014), p. 154.

  67. N. Patibandla, T. A. Ramanarayanan and F. Cosandey, Journal of The Electrochemical Society 138, 1991 (2176).

    CAS  Google Scholar 

  68. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton and D. P. Leta, Oxidation of Metals 29, 1988 (445).

    CAS  Google Scholar 

  69. T. Brylewski, J. Prazuch and K. Przybylski, Bull 61, 2000 (221).

    CAS  Google Scholar 

  70. A. W. Bowen and G. M. Leak, Metallurgical Transactions 1, 1970 (2767).

    CAS  Google Scholar 

  71. S. J. Rothman, L. J. Nowicki and G. E. Murch, Journal of Physics F: Metal Physics 10, 1980 (383).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Maxime GUERINEAU, Frédéric HERBST and Nicolas GEOFFROY for technical support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

CS: materials preparation, oxidation and characterization experiments, data collection, analysis and interpretation, original draft writing. IP: conceptualization, methodology, data interpretation, original draft reviewing, supervision, project administration, funding acquisition. AV: additively manufactured materials supply. CL: additively manufactured materials supply. SC: conceptualization, methodology, data interpretation, original draft reviewing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Corentin Siri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of Data and Material

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siri, C., Popa, I., Vion, A. et al. Impact of Selective Laser Melting Additive Manufacturing on the High Temperature Behavior of AISI 316L Austenitic Stainless Steel. Oxid Met 94, 527–548 (2020). https://doi.org/10.1007/s11085-020-10005-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-10005-8

Keywords

Navigation