Skip to main content
Log in

The Influence of Specimen Surface Roughness and Temperature of Steam Injection on Breakaway Oxidation Behavior of Zry-4 Fuel Cladding in Steam at 1273 K

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The steam oxidation behavior of Zr-based Zircaloy-4 fuel cladding was studied at 1273 K with two different surface roughness levels. Steam was introduced either at room temperature (RT) or at 1273 K. Weight gain kinetics were evaluated by post-test weight measurement, and the reaction products and alloy microstructure were evaluated using optical microscopy. Hydrogen pick-up was measured by the gas extraction technique. Specimen surface roughness did not affect the oxidation kinetics or the hydrogen absorption. The time to breakaway oxidation was suppressed when steam was introduced at RT, and the oxide was more adherent, suggesting superior mechanical properties. When steam was introduced at 1273 K, an undulated oxide–metal interface formed earlier and a higher amount of hydrogen was absorbed by cladding before the kinetic transition. The alloy grain grew into larger size in the condition when steam was injected at 1273 K compared to the condition when steam was injected at RT, which may affect the observed behavior. After the oxide breakaway, the rate of hydrogen absorption accelerated substantially independent of the temperature of steam injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. V. Cathcart, R. E. Pawel, R. A. McKee, et al., Zirconium metal-water oxidation kinetics IV. Reaction rate studies, ORNL, ORNL/NUREG-17 (1977).

  2. S. Leistikow and G. Schanz, Nuclear Engineering and Design 103, 1987 (65).

    Article  CAS  Google Scholar 

  3. H. M. Chung, Nuclear Engineering and Technology 37, 2005 (327).

    CAS  Google Scholar 

  4. T. Ahmed and L. H. Keys, Journal of the Less Common Metals 39, 1975 (99).

    Article  CAS  Google Scholar 

  5. F. Nagase, T. Otomo and H. Uetsuka, Journal of Nuclear Science and Technology 40, 2003 (213).

    Article  CAS  Google Scholar 

  6. J. H. Baek, K. B. Park and Y. H. Jeong, Journal of Nuclear Materials 335, 2004 (443).

    Article  CAS  Google Scholar 

  7. J. H. Baek and Y. H. Jeong, Journal of Nuclear Materials 372, 2008 (152).

    Article  CAS  Google Scholar 

  8. M. Billone, Y. Yan, T. Burtseva, and R. Daum, Cladding embrittlement during postulated loss-of-coolant accidents, U.S. NRC report, NUREG/CR-6967 (2008).

  9. H.-G. Kim, I.-H. Kim, B.-K. Choi and J.-Y. Park, Journal of Nuclear Materials 418, 2011 (186).

    Article  CAS  Google Scholar 

  10. M. Steinbruck, N. Ver and M. Grosse, Oxidation of Metals 76, 2011 (215).

    Article  Google Scholar 

  11. M. Yamato, F. Nagase and M. Amaya, Journal of Nuclear Materials 445, 2014 (78).

    Article  CAS  Google Scholar 

  12. H. Akhiani and J. Szpunar, Applied Surface Science 285P, 2013 (832).

    Article  Google Scholar 

  13. P. Platt, V. Allen, M. Fenwick, M. Gass and M. Preuss, Corrosion Science 98, 2015 (1).

    Article  CAS  Google Scholar 

  14. L. Yegorova, K. Lioutov, N. Jouravkova, et al., Experimental study of embrittlement of Zr-1%Nb VVER cladding under LOCA-relevant conditions, International agreement report, NUREG/IA-0211 (2005).

  15. T. Narukawa and M. Amaya, Journal of Nuclear Science and Technology 56, 2019 (650).

    Article  CAS  Google Scholar 

  16. H. M. Chung and T. F. Kassner, Journal of Nuclear Materials 84, 1979 (327).

    Article  CAS  Google Scholar 

  17. M. Negyesi, J. Burda, O. Blahova, S. Linhart and V. Vrtilkova, Journal of Nuclear Materials 416, 2011 (288).

    Article  CAS  Google Scholar 

  18. S. Guilbert-Banti, P. Lacote, G. Taraud, P. Berger, J. Desquines and C. Duriez, Journal of Nuclear Materials 469, 2016 (228).

    Article  CAS  Google Scholar 

  19. J. C. Brachet, L. Portier, T. Forgeron, et al., in Zirconium in the Nuclear Industry: 13th International Symposium, ASTM-STP 1423 (ASTM International, West Conshohocken, PA, 2001). Annency, France.

  20. N. Jia, Z. Yicheng, W. Lian, Z. Zhihao and X. Jianxin, Nuclear Materials and Energy 17, 2018 (158).

    Article  Google Scholar 

  21. C. Toffolon-Masclet, T. Guilbert and J. C. Brachet, Journal of Nuclear Materials 372, 2008 (367).

    Article  CAS  Google Scholar 

  22. M. Grosse, E. Lehmann, M. Steinbruck, G. Kuhne and J. Stuckert, Journal of Nuclear Materials 385, 2009 (339).

    Article  CAS  Google Scholar 

  23. B. Cox and Y.-M. Wong, Journal of Nuclear Materials 270, 1999 (134).

    Article  CAS  Google Scholar 

  24. M. Grosse, M. van den Berg, C. Goulet, E. Lehmann and B. Schillinger, Nuclear Instruments and Methods in Physics Research Section A 651, 2011 (253).

    Article  CAS  Google Scholar 

  25. C.M. Lee, Y.-K. Mok, D.-S. Sohn, High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding, J. Nucl. Mater. 496 (2017) 343-352.

  26. D. Kaddour, A.-F. Gourgues-Lorenzon, J.-C. Brachet, L. Portier and A. Pineau, Journal of Nuclear Materials 408, 2011 (116).

    Article  CAS  Google Scholar 

  27. A. M. Garde, H. M. Chung and T. F. Kassner, Acta Metallurgica 26, 1978 (153).

    Article  CAS  Google Scholar 

  28. B. Cox and B. R. Harder, Journal of the Electrochemical Society 110, 1963 (1110).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the help of other members of Fuel Safety Research Group of Nuclear Safety Research Center. This study was performed under the research entrusted by Secretariat of Nuclear Regulation Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Amaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negyesi, M., Amaya, M. The Influence of Specimen Surface Roughness and Temperature of Steam Injection on Breakaway Oxidation Behavior of Zry-4 Fuel Cladding in Steam at 1273 K. Oxid Met 94, 283–299 (2020). https://doi.org/10.1007/s11085-020-09992-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09992-5

Keywords

Navigation