Skip to main content
Log in

A Diffusion–Reaction Continuum Damage Model for the Oxidation Behaviors of High-Cr Steels in Supercritical Water

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In this paper, a diffusion–reaction continuum damage model is proposed to study the oxidation behavior of high-Cr steels in supercritical water. The model is formulated based on a three-dimensional (3-D) setting. By considering the diffusion and reaction effects of free oxygen in a domain of solid material, a partial differential equation named as the diffusion–reaction equation is derived, which contains an oxidation damage variable representing the fraction of the oxidized metal at a local material point. The evolution equation of the oxidation damage variable can also be derived, which together with the diffusion–reaction equation formulates the governing system of the model. To show the efficiency of the model, a 1-D problem is first studied. By taking P92 steel as an example, the values of the parameters in the governing system are determined. Based on the numerical solutions to the governing system, some key features of the oxidation behavior of high-Cr steel sample are analyzed. The influences of the parameters on the oxidation process have also been discussed. The model is further implemented into the ANSYS UserMatTh subroutine. Then, some typical examples of FEM simulations are introduced. It can be seen that our current model is suitable to simulate the global oxidation behaviors of high-Cr steel specimens with different geometrical shapes and subject to different boundary conditions. Therefore, the model would be helpful for the design and residual lifetime evaluation of high-Cr steel components in practical applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Ampornrat and G. S. Was, Journal of Nuclear Materials371, 1 (2007).

    Article  CAS  Google Scholar 

  2. F. R. Biglari and K. M. Nikbin, Computational Materials Science84, 267 (2014).

    Article  CAS  Google Scholar 

  3. F. R. Biglari and K. M. Nikbin, International Journal of Damage Mechanics26, 859 (2017).

    Article  CAS  Google Scholar 

  4. Y. Chen, K. Sridharan and T. Allen, Corrosion Science48, 2843 (2006).

    Article  CAS  Google Scholar 

  5. P. J. Ennis and A. Czyrska-Filemonowicz, Sadhana28, 709 (2003).

    Article  CAS  Google Scholar 

  6. S. Fetni, A. Toumi, I. Mkaouar and C. Boubahri, Engineering Failure Analysis79, 575 (2017).

    Article  CAS  Google Scholar 

  7. B. Fournier, M. Sauzay, C. Caes, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau and A. Pineau, International Journal of Fatigue30, 649 (2008).

    Article  CAS  Google Scholar 

  8. C. Q. Fu, H. L. Ye, X. Y. Jin, N. G. Jin and L. L. Gong, Computers and Concrete15, 847 (2015).

    Article  Google Scholar 

  9. H. C. Guo, D. M. Ji, J. Z. Tang, Q. Sun, C. Dai and J. X. Ren, Materials at High Temperatures36, 125 (2019).

    Article  CAS  Google Scholar 

  10. H. Larsson, T. Jonsson, R. Naraghi, Y. Gong, R. C. Reed and J. Agren, Materials and Corrosion68, 133 (2017).

    Article  CAS  Google Scholar 

  11. Y. H. Li, T. T. Xu, S. Z. Wang, B. Fekete, J. Yang, J. Q. Yang, J. Qiu, A. N. Xu, J. M. Wang, Y. Xu and D. D. Macdonald, Materials12, 3 (2019).

    Google Scholar 

  12. E. W. Lund, Journal of Chemical Education42, 548 (1965).

    Article  CAS  Google Scholar 

  13. M. Montgomery, S. A. Jensen, F. Rasmussen and T. Vilhelmsen, British Corrosion Journal44, 196 (2009).

    CAS  Google Scholar 

  14. A. Nagode, L. Kosec, B. Ule and G. Kosec, Metalurgija50, 45 (2011).

    CAS  Google Scholar 

  15. S. Penttilä, A. Toivonen, L. Heikinheimo and R. Novotny, Nuclear Technology4, 74 (2008).

    Google Scholar 

  16. M. Pettiná, R. W. Harrison, L. J. Vandeperre, F. R. Biglari, P. Brown, W. E. Lee and K. Nikbin, Journal of the European Ceramic Society36, 2341 (2016).

    Article  Google Scholar 

  17. M. Schütze, M. Schorr, D. P. Renusch, A. Donchev and J. P. T. Vossen, Materials Research7, 111 (2004).

    Article  Google Scholar 

  18. Q. C. Sherman and P. W. Voorhees, Physical Review E95, 032801 (2017).

    Article  CAS  Google Scholar 

  19. Y.Y. Sun, The Research of P92 Steel Oxidation Kinetics Considering of the Oxide Scale Voids in Supercritical Water. Master Thesis (North China Electric Power University, Beijing, 2016).

  20. Y. H. Suo and S. P. Shen, Journal of Applied Physics114, 164905 (2013).

    Article  Google Scholar 

  21. Y. H. Suo and S. P. Shen, Acta Mechanica226, 3375 (2015).

    Article  Google Scholar 

  22. C. Wang, S. G. Ai and D. N. Fang, Acta Mechanica Sinica32, 881 (2016).

    Article  CAS  Google Scholar 

  23. H. L. Wang, Y. H. Suo and S. P. Shen, Oxidation of Metals83, 507 (2015).

    Article  CAS  Google Scholar 

  24. K. J. Yin, S. Y. Qiu, R. Tang, Q. Zhang and L. F. Zhang, The Journal of Supercritical Fluids50, 2009 (235).

    Article  CAS  Google Scholar 

  25. M. A. Zaeem and H. E. Kadiri, Computational Materials Science89, 122 (2014).

    Article  Google Scholar 

  26. C. L. Zhang, J. G. Li, Z. X. Zhang, N. Dong, J. Wang, Y. Liu, L. X. Ling and P. D. Han, AIP Advances8, 085104 (2018).

    Article  Google Scholar 

  27. X. Y. Zhong, X. Q. Wu and E.-H. Han, Journal of Supercritical Fluids72, 68 (2012).

    Article  CAS  Google Scholar 

  28. X. Y. Zhong, X. Q. Wu and E.-H. Han, Corrosion Science90, 511 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Guangdong Natural Science Foundation for Distinguished Young Scholar (Project No.: 2015A030306009), Guangdong Special Support Plans for Young Scientists in Science and Technology (Project No.: 2016TQ03X532) and the Fundamental Research Funds for the Central Universities from SCUT (Project No.: x2tj/D2181310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, J. A Diffusion–Reaction Continuum Damage Model for the Oxidation Behaviors of High-Cr Steels in Supercritical Water. Oxid Met 94, 5–25 (2020). https://doi.org/10.1007/s11085-020-09975-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09975-6

Keywords

Navigation