Skip to main content
Log in

Initial Oxidation Behavior of Ferritic Stainless Steel Interconnect with Sputtered NiFe2 Alloy Coating

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Initial oxidation behavior of ferritic stainless steel with a sputtered NiFe2 coating for solid oxide fuel cells interconnect application was investigated in air at 800 °C to understand the transformation process from the NiFe2 alloy coating to NiFe2O4 spinel layer. The results indicated that the NiFe2 coating was initially converted to a surface scale with a layered structure consisting of a top Fe2O3 layer followed by NiFe2O4 mid-layer and an NiO inner layer. Cr oxide started to form at scale/steel interface before the coating was completely oxidized. The preferential growth orientation of Fe2O3 on the surface varied with time during the initial oxidation stage. Steel preoxidation prior to coating not only accelerated the oxidation of NiFe2 coating and the growth of NiFe2O4 layer, but also suppressed the orientated growth of Fe2O3. The surface scales on the coated steels were electrically conductive. The oxidation mechanism of the coated steels is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Brouzgou, A. Demin and P. Tsiakaras, in Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology, vol. 574, eds. M. Boaro and A. S. Aricò (Springer, Cham, 2017), p. 119.

    Google Scholar 

  2. Z. Shao, W. Zhou and Z. Zhu, Progress in Materials Science57, 804 (2012).

    CAS  Google Scholar 

  3. J. W. Fergus, Materials Science and Engineering: A397, 271 (2005).

    Google Scholar 

  4. H. Falk-Windisch, J. E. Svensson and J. Froitzheim, Journal of Power Sources287, 25 (2015)

    CAS  Google Scholar 

  5. M. Stanislowski, E. Wessel, K. Hilpert, T. Markus and L. Singheiser, Journal of the Electrochemical Society154, A295 (2007).

    CAS  Google Scholar 

  6. S. P. Jiang and X. Chen, International Journal of Hydrogen Energy39, 505 (2014).

    CAS  Google Scholar 

  7. Z. Xu, W. Xu, E. Stephens and B. Koeppel, Renewable Energy113, 1472 (2017).

    CAS  Google Scholar 

  8. W. N. Liu, X. Sun, E. Stephens and M. A. Khaleel, Journal of Power Sources189, 1044 (2009).

    CAS  Google Scholar 

  9. S. J. Han, Y. Chen and S. Sampath, Journal of Power Sources259, 245 (2014).

    CAS  Google Scholar 

  10. L. da Conceição, L. Dessemond, E. Djurado and M. M. V. M. Souza, Journal of Power Sources241, 159 (2013).

    Google Scholar 

  11. J.-H. Kim, R.-H. Song and S.-H. Hyun, Solid State Ionics174, 185 (2004).

    CAS  Google Scholar 

  12. S. Lee, C.-L. Chu, M.-J. Tsai and J. Lee, Applied Surface Science256, 1817 (2010).

    CAS  Google Scholar 

  13. P. Piccardo, S. Chevalier, R. Molinset, et al., Surface and Coatings Technology201, 4471 (2006).

    CAS  Google Scholar 

  14. P. Piccardo, P. Gannon, S. Chevalieret, et al., Surface and Coatings Technology202, 1221 (2007).

    CAS  Google Scholar 

  15. S. Chevalier and J. P. Larpin, Materials Science and Engineering: A363, 116 (2003).

    Google Scholar 

  16. Y. Liu and D. Y. Chen, International Journal of Hydrogen Energy34, 9220 (2009).

    CAS  Google Scholar 

  17. G. Jalilvand and M.-A. Faghihi-Sani, International Journal of Hydrogen Energy38, 12007 (2013).

    CAS  Google Scholar 

  18. W. Zhang, J. Pu, B. Chi and L. Jian, Journal of Power Sources196, 5591 (2011).

    CAS  Google Scholar 

  19. P. Wiman, T. Tummaporn, O. Witthayarungruengsri and T. Siripongsakul, Key Engineering Materials728, 117 (2017).

    Google Scholar 

  20. S. N. Hosseini, F. Karimzadeh, M. H. Enayati and N. M. Sammes, Solid State Ionics289, 95 (2016).

    CAS  Google Scholar 

  21. Z. H. Bi, J. H. Zhu and J. L. Batey, Journal of Power Sources195, 3605 (2010).

    CAS  Google Scholar 

  22. C. C. Mardare, H. Asteman, M. Spiegel, A. Savan and A. Ludwig, Applied Surface Science255, 1850 (2008).

    CAS  Google Scholar 

  23. E. Stefan, D. Neagu, P. Blennow Tullmaret, et al., Materials Research Bulletin89, 232 (2017).

    CAS  Google Scholar 

  24. J. C. W. Mah, A. Muchtar, M. R. Somalu and M. J. Ghazali, International Journal of Hydrogen Energy42, 9219 (2017).

    CAS  Google Scholar 

  25. Q. Fu, F. Tietz, D. Sebold, E. Wessel and H.-P. Buchkremer, Corrosion Science54, 68 (2012).

    CAS  Google Scholar 

  26. J. Froitzheim, S. Canovic, M. Nikumaa, R. Sachitanand, L. G. Johansson and J. E. Svensson, Journal of Power Sources220, 217 (2012).

    CAS  Google Scholar 

  27. J. G. Grolig, P. Alnegren, J. Froitzheim and J.-E. Svensson, Journal of Power Sources297, 534 (2015).

    CAS  Google Scholar 

  28. S. Joshi and A. Petric, International Journal of Hydrogen Energy42, 5584 (2017).

    CAS  Google Scholar 

  29. S. Geng, Q. Zhao, Y. Liet, et al., International Journal of Hydrogen Energy42, 10298 (2017).

    CAS  Google Scholar 

  30. S. Geng, Q. Zhao, H. Wang and F. Wang, Oxidation of Metals88, 203 (2017).

    CAS  Google Scholar 

  31. H. J. T. Ellingham, Society of Chemical Industry63, 125 (1944).

    CAS  Google Scholar 

  32. K. R. Lawless, Reports on Progress in Physics37, 231 (1974).

    CAS  Google Scholar 

  33. P. Wei, M. R. Bateni and A. Petric, Journal of Materials Science47, 5205 (2012).

    CAS  Google Scholar 

  34. Z. Ranjbar-Nouri, M. Soltanieh and S. Rastegari, Surface and Coatings Technology334, 365 (2018).

    CAS  Google Scholar 

  35. Q. Zhao, S. Geng, G. Chen and F. Wang, Journal of Alloys and Compounds769, 120 (2018).

    CAS  Google Scholar 

  36. Q. Zhao, S. Geng, G. Chen and F. Wang, International Journal of Hydrogen Energy44, 13744 (2019).

    CAS  Google Scholar 

  37. S. Geng, Y. Li, Z. Ma, L. Wang, L. Li and F. Wang, Journal of Power Sources195, 3256 (2010).

    CAS  Google Scholar 

  38. S. Geng, Y. Li, Z. Ma, S. Zhu and F. Wang, Journal of Power Sources232, 66 (2013).

    CAS  Google Scholar 

  39. W. Xiao, H. Deng, S. Zouet, et al., Journal of Nuclear Materials509, 542 (2018).

    CAS  Google Scholar 

  40. S. Thirumalai, Z. H. Barber, J. A. Williams and A. L. Greer, Surface and Coatings Technology358, 427 (2019).

    CAS  Google Scholar 

  41. C. Macauley, P. Gannon, M. Deibert and P. White, International Journal of Hydrogen Energy36, 4540 (2011).

    CAS  Google Scholar 

  42. M. Salou, S. Rioual, B. Lescop, B. Calvez, G. Nguyen-Vien and B. Rouvellou, Corrosion Science51, 703 (2009).

    CAS  Google Scholar 

  43. B.-S. Kim, Y.-G. Kim, H.-W. Lee and W.-S. Chung, Metals and Materials International8, 367 (2002).

    CAS  Google Scholar 

  44. L. Barka, M. Balat-Pichelin, J. L. Sans and E. Beche, Journal of Alloys and Compounds772, 1003 (2019).

    CAS  Google Scholar 

  45. M. R. Ardigo, V. Parry, I. Popaet, et al., Defect and Diffusion Forum323–325, 239 (2012).

    Google Scholar 

  46. A. C. S. Sabioni, J. N. V. Souza, V. Ji, F. Jomard, V. B. Trindade and J. F. Carneiro, Solid State Ionics276, 1 (2015).

    CAS  Google Scholar 

  47. P. F. You, X. Zhang, H. L. Zhang, H. J. Liu and C. L. Zeng, International Journal of Hydrogen Energy43, 7492 (2018).

    CAS  Google Scholar 

  48. L. Ma, L. Zhang, X.-B. Li, Z.-Y. Li and K.-C. Zhou, Transactions of Nonferrous Metals Society of China25, 146 (2015).

    CAS  Google Scholar 

  49. J. L. G.-P. B. Panicaud and J. F. Dinhut, Applied Surface Science252, 5700 (2006).

    CAS  Google Scholar 

  50. A. M. Huntz, Materials Science and Engineering: AA201, 211 (1995).

    CAS  Google Scholar 

  51. N. Li, J. Xiao, N. Prud’homme, Z. Chen and V. Ji, Applied Surface Science316, 108 (2014).

    CAS  Google Scholar 

  52. N. F. M. N. Cabrera, Reports on Progress in Physics12, 163 (1949).

    CAS  Google Scholar 

  53. J. H. Zhu, S. J. Geng, Z. G. Lu and W. D. Porter, Journal of the Electrochemical Society154, B1288 (2007).

    CAS  Google Scholar 

  54. W. Z. Zhu and S. C. Deevi, Materials Science and Engineering: A348, 227 (2003).

    Google Scholar 

  55. N. Shaigan, W. Qu, D. G. Ivey and W. Chen, Journal of Power Sources195, 1529 (2010).

    CAS  Google Scholar 

  56. H. K. Bowen, W. D. Kingery and D. R. Uhlmann, Introduction to Ceramics, (Springer, Tokyo, 1976).

    Google Scholar 

  57. C. Goebel, A. G. Fefekos, J.-E. Svensson and J. Froitzheim, Journal of Power Sources383, 110 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China under Grant No. 2017YFB0306100 and the National Natural Science Foundation of China (NSFC) under Grant No. 51871052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujiang Geng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Geng, S., Chen, G. et al. Initial Oxidation Behavior of Ferritic Stainless Steel Interconnect with Sputtered NiFe2 Alloy Coating. Oxid Met 93, 283–299 (2020). https://doi.org/10.1007/s11085-019-09954-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09954-6

Keywords

Navigation