Skip to main content

Advertisement

Log in

Effect of Iron-Aluminide Coating on the Fracture Mechanism of Ferritic–Martensitic Steel in Coal-Fired Boilers Environment

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Due to the coal combustion that generates halides, steel components can confront hot corrosion during applications at high temperature. The hot-dipping aluminum (HDA) was operated on the 9Cr–Mo steel (grade 91) to form the iron aluminide layer. A hot corrosion-loading test of aluminized grade 91 (HDA-91) was carried out by covering a salt mixture of NaCl/Na2SO4 under static load ranging from 75 to 100 MPa at 600 °C and 700 °C, respectively. The failure mechanism was assessed after various elongations using scanning electron microscopy and optical microscopy. The results showed that HDA-91 presented higher hot corrosion resistance than the uncoated grade 91. The aluminide layer formed a higher ductility oxide and prevented the substrate form grain-boundary oxidation at high temperatures, resulting in durability. The results also revealed a significant improvement in reduction of area during the hot corrosion-loading test for grade 91 that underwent HDA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. J. Wang and S. M. Chen, Surface and Coatings Technology 200, 6601 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.031.

    Article  CAS  Google Scholar 

  2. D. Wang and Z. Shi, Applied surface science 227, 255 (2004). https://doi.org/10.1016/j.apsusc.2003.11.076.

    Article  CAS  Google Scholar 

  3. H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari and J. Hejazi, Journal of Materials Processing Technology 124, 345 (2002). https://doi.org/10.1016/S0924-0136(02)00225-X.

    Article  CAS  Google Scholar 

  4. W. J. Cheng and C. J. Wang, Applied Surface Science 257, 4663 (2011). https://doi.org/10.1016/j.apsusc.2010.12.118.

    Article  CAS  Google Scholar 

  5. A. V. Alboom, B. Lemmens, B. Breitbach, E. De Grave, S. Cottenier and K. Verbeken, Surface and Coatings Technology 324, 419 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.091.

    Article  CAS  Google Scholar 

  6. Y. Y. Chang, C. C. Tsaur, and J. C. Rock, Surface and Coatings Technology, 200, 6588 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.038.

  7. H. Springer, A. Kostka, J. F. D. Santos and D. Raabe, Materials Science and Engineering: A 528, 4630 (2011). https://doi.org/10.1016/j.msea.2011.02.057.

    Article  CAS  Google Scholar 

  8. Z. X. Gui, K. Wang, Y. S. Zhang and B. Zhu, Applied surface science 316, 595 (2014). https://doi.org/10.1016/j.apsusc.2014.08.043.

    Article  CAS  Google Scholar 

  9. D. J. Wu, W. G. Mao, Y. C. Zhou and C. S. Lu, Applied Surface Science 257, 6040 (2011). https://doi.org/10.1016/j.apsusc.2011.01.119.

    Article  CAS  Google Scholar 

  10. U. Wiklund, P. Hedenqvist and S. Hogmark, Surface and Coatings Technology 97, 773 (1997). https://doi.org/10.1016/S0257-8972(97)00290-9.

    Article  CAS  Google Scholar 

  11. W. J. Cheng and C. J. Wang, Applied Surface Science 274, 258 (2013). https://doi.org/10.1016/j.apsusc.2013.03.030.

    Article  CAS  Google Scholar 

  12. C. C. Tsaur, J. C. Rock, C. J. Wang and Y. H. Su, Materials Chemistry and Physics 89, 445 (2005). https://doi.org/10.1016/j.matchemphys.2004.10.002.

    Article  CAS  Google Scholar 

  13. W. J. Cheng and C. J. Wang, Applied Surface Science 277, 139 (2013). https://doi.org/10.1016/j.apsusc.2013.04.015.

    Article  CAS  Google Scholar 

  14. C. T. Liu, V. K. Sikka, and C. G. McKamey. Alloy development of FeAl aluminide alloys for structural use in corrosive environments. No. ORNL/TM–12199. Oak Ridge National Lab., TN (United States) (1993).

  15. H. C. Liang and C. J. Wang, Surface and Coatings Technology 350, 496 (2018). https://doi.org/10.1016/j.surfcoat.2018.05.093.

  16. R. Viswanathan, K. Coleman and U. Rao, International Journal of Pressure Vessels and Piping 83, 778 (2006). https://doi.org/10.1016/j.ijpvp.2006.08.006.

    Article  CAS  Google Scholar 

  17. Y. Fukuda, Materials Science Forum 696, 236 (2011). https://doi.org/10.4028/www.scientific.net/MSF.696.236.

    Article  CAS  Google Scholar 

  18. P. Castello, V. Guttmann, N. Farr, and G. Smith, Materials and Corrosion, 51, 786 (2000). https://doi.org/10.1002/1521-4176(200011)51:11<786::AID-MACO786>3.0.CO;2-M.

  19. G. Stein-Brzozowska, D. M. Flórez, J. Maier and G. Scheffknecht, Fuel 108, 521 (2013). https://doi.org/10.1016/j.fuel.2012.11.081.

    Article  CAS  Google Scholar 

  20. S. Mahajan, and R. Chhibber, Engineering Failure Analysis 99, 210 (2019). https://doi.org/10.1016/j.engfailanal.2019.02.013.

  21. T. Okada, Journal of the Electrochemical Society 131, 241 (1984). https://doi.org/10.1149/1.2115556.

    Article  CAS  Google Scholar 

  22. I. G. Wright, and B. A. Pint, An Assessment of the High-Temperature Oxidation Behavior of Fe-Cr Steels in Water Vapor and Steam Paper 02377 presented at NACE CORROSION 2002, April, 2002 (Denver, CO).

  23. R. Mittal and B. S. Sidhu, Journal of Materials Engineering and Performance 24, 670 (2015). https://doi.org/10.1007/s11665-014-1338-4.

    Article  CAS  Google Scholar 

  24. L. Falat, L. Čiripová, J. Kepič, J. Buršík and I. Podstranská, Engineering Failure Analysis 40, 141 (2014). https://doi.org/10.1016/j.engfailanal.2014.02.018.

    Article  CAS  Google Scholar 

  25. F. Masuyama, ISIJ international 41, 612 (2001). https://doi.org/10.2355/isijinternational.41.612.

    Article  CAS  Google Scholar 

  26. B. Fournier, M. Sauzay and A. Pineau, International Journal of Plasticity 27, 1803 (2011). https://doi.org/10.1016/j.ijplas.2011.05.007.

    Article  CAS  Google Scholar 

  27. R. Viswanathan, J. Sarver and J. M. Tanzosh, Journal of Materials Engineering and Performance 15, 255 (2006). https://doi.org/10.1361/105994906X108756.

    Article  CAS  Google Scholar 

  28. K. Maruyama, K. Sawada and J. I. Koike, ISIJ international 41, 641 (2001). https://doi.org/10.2355/isijinternational.41.641.

    Article  CAS  Google Scholar 

  29. A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal and E. Matykina, Corrosion Science 50, 780 (2008). https://doi.org/10.1016/j.corsci.2007.11.004.

    Article  CAS  Google Scholar 

  30. K. Hashimoto, K. Asami, A. Kawashima, H. Habazaki and E. Akiyama, Corrosion Science 49, 42 (2007). https://doi.org/10.1016/j.corsci.2006.05.003.

    Article  CAS  Google Scholar 

  31. H. E. Evans, Materials Science and Engineering: A 120, 139 (1989). https://doi.org/10.1016/0921-5093(89)90731-4.

    Article  Google Scholar 

  32. V. Teixeira, Vacuum 64, 393 (2002). https://doi.org/10.1016/S0042-207X(01)00327-X.

    Article  CAS  Google Scholar 

  33. B. F. Chen, J. Hwang, I. F. Chen, G. P. Yu and J. H. Huang, Surface and Coatings Technology 126, 91 (2000). https://doi.org/10.1016/S0257-8972(99)00669-6.

    Article  CAS  Google Scholar 

  34. T. B. Massalski. Binary Alloy Phase Diagrams. vol. 3 (ASM International, 2874, 1992).

  35. B. Lemmens, H. Springer, M. Peeters, I. De Graeve, J. De Strycker, D. Raabe and K. Verbeken, Materials Science and Engineering: A 710, 385 (2018). https://doi.org/10.1016/j.msea.2017.10.094.

    Article  CAS  Google Scholar 

  36. C. J. Wang, Y. C. Chang and Y. H. Su, Oxidation of metals 59, 115 (2003). https://doi.org/10.1023/A:1023022100300.

    Article  CAS  Google Scholar 

  37. R. W. Ashbrook and A. R. Marder, Metallurgical Transactions A 16, 897 (1985). https://doi.org/10.1007/BF02814841.

    Article  Google Scholar 

  38. O. Underwood, J. Madison, R. M. Martens, G. B. Thompson, S. Welsh and J. Evans, Metallography, Microstructure, and Analysis 5, 302 (2016). https://doi.org/10.1007/s13632-016-0290-0.

    Article  CAS  Google Scholar 

  39. M. Windmann, A. Röttger and W. Theisen, Surface and Coatings Technology 226, 130 (2013). https://doi.org/10.1016/j.surfcoat.2013.03.045.

    Article  CAS  Google Scholar 

  40. L. Qian, S. Zhu, Y. Kagawa and T. Kubo, Surface and Coatings Technology 173, 178 (2003). https://doi.org/10.1016/S0257-8972(03)00429-8.

    Article  CAS  Google Scholar 

  41. E. Tzimas and G. Papadimitriou, Surface and Coatings Technology 145, 179 (2001). https://doi.org/10.1016/S0257-8972(01)01323-8.

    Article  CAS  Google Scholar 

  42. B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau and A. Pineau, International Journal of Fatigue 30, 663 (2008). https://doi.org/10.1016/j.ijfatigue.2007.05.008.

    Article  CAS  Google Scholar 

  43. B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault and V. Rabeau, International Journal of Fatigue 30, 1797 (2008). https://doi.org/10.1016/j.ijfatigue.2008.02.006.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are very grateful to the Ministry of Science and Technology of Republic of China for funding support Grant No. 107-2221-E-011-008-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Chang Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, HC., Wang, CJ. Effect of Iron-Aluminide Coating on the Fracture Mechanism of Ferritic–Martensitic Steel in Coal-Fired Boilers Environment. Oxid Met 92, 457–470 (2019). https://doi.org/10.1007/s11085-019-09941-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09941-x

Keywords

Navigation