Skip to main content
Log in

Vaporization of Protective Oxide Films into Different Gas Atmospheres

  • Review
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Vaporization often accompanies high-temperature oxidation and corrosion. In this review, vaporization under a vacuum as well as static gas and flowing gas conditions is discussed. The focus is on common protective oxides—Cr2O3, SiO2, and Al2O3. However, the methods and conclusions apply to other oxides as well. Vaporization into a vacuum is an ideal starting point, as the basic mechanisms for vaporization have been derived from these studies. Imposing an overpressure of a static gas changes the vaporization rates from both a thermodynamic and a kinetic aspect. Finally, a flowing gas is the most common situation encountered in high-temperature oxidation and corrosion. Laminar and turbulent flow effects are treated with both analytic expressions for mass transfer and computational fluid dynamics (CFD). A vaporizing SiO2 coupon in a laboratory furnace is examined with both the analytic expressions and the CFD approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. O. Knacke and I. N. Stranski, The mechanism of evaporation. Progress in Metal Physics6, 1956 (181–235).

    Article  CAS  Google Scholar 

  2. W. Hirschwald and I. Stranski, Theoretical considerations and experiments on evaporation of solids, in Condensation and Evaporation of Solids (Gordon & Breach, New York, 1964), pp 59–85.

  3. L. Brewer, Thermodynamic Properties of the Oxides and their Vaporization Processes. Chemical Reviews52, (1), 1953 (1–75).

    Article  CAS  Google Scholar 

  4. R. J. Ackermann and R.J. Thorn, Vaporization of Oxides. in Progress in Ceramic Science, ed. J. E. Burke, (Pergamom Press, New York, 1961), pp. 39–88.

  5. H. L. Schick, Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica. Chemical Reviews60, (4), 1960 (331–362).

    Article  CAS  Google Scholar 

  6. R. F. Porter, W. A. Chupka and M. G. Inghram, Mass Spectrometric Study of Gaseous Species in the Si-SiO2 System. The Journal of Chemical Physics23, (1), 1955 (216).

    Article  CAS  Google Scholar 

  7. J. Drowart, G. DeMaria, R. P. Burns and M. G. Inghram, Thermodynamic Study of Al2O3 Using a Mass Spectrometer. The Journal of Chemical Physics32, (5), 1960 (1366–1372).

    Article  CAS  Google Scholar 

  8. B. B. Ebbinghaus, Thermodynamics of Gas-Phase Chromium Species: The Chromium Oxides, the Chromium Oxyhydroxides, and Volatility Calculations in Waste Incineration Processes. Combustion and Flame93, (1–2), 1993 (119–137).

    Article  CAS  Google Scholar 

  9. E. A. Gulbransen and S. A. Jansson, The High-Temperature Oxidation, Reduction, and Volatilization Reactions of Silicon and Silicon Carbide. Oxidation of Metals4, (3), 1972 (181–201).

    Article  CAS  Google Scholar 

  10. F. J. Kohl, D. M. Leisz, G. C. Fryburg, and C. A. Stearns, Thermochemical Analyses of Oxidative Vaporization of Metals and Oxides by Oxygen Molecules and Atoms. NASA TM-X-73682, 1977.

  11. A. H. Heuer and V. L. K. Lou, Volatility Diagrams for Silica, Silicon Nitride, and Silicon Carbide and Their Application to High-Temperature Decomposition and Oxidation. Journal of the American Ceramic Society73, (10), 1990 (2789–2803).

    Article  Google Scholar 

  12. P. J. Meschter, E. J. Opila, and N. S. Jacobson, Water Vapor Mediated Volatilization of High Temperature Materials, in Annual Reviews of Materials Research, ed. D. M. Lipkin (Annual Reviews, Inc., Palo Alto, 2013), pp. 559–588.

  13. M. McNallan and W. Liang, Gaseous-Transport-Controlled Chlorination of CoO in Flowing Oxygen Chlorine-Argon Mixtures at 1000 K. Journal of the American Ceramic Society64, (5), 1981 (302–307).

    Article  CAS  Google Scholar 

  14. E. J. Opila and R. E. Hann, Paralinear oxidation of CVD SiC in water vapor. Journal of the American Ceramic Society80, (1), 1997 (197–205).

    Article  CAS  Google Scholar 

  15. A. W. Searcy, The Kinetics of Evaporation and Condensation Reactions, in Chemical and Mechanical Behavior of Inorganic Materials, eds. A. W. Searcy, D. V. Ragone, and U. Columbo (Wiley-Interscience, New York, 1970), pp. 107–133.

  16. G. Rosenblatt, Evaporation from Solids, in Treatise on Solid State Chemistry, ed. N. B. Hannay (Springer, Boston, 1976), pp. 165–240.

  17. G. A. Somorjai, Mechanism of Sublimation. Science162, (3855), 1968 (755–760).

    Article  CAS  Google Scholar 

  18. J. P. Hirth and G. M. Pound, Condensation and Evaporation; Nucleation and Growth Kinetics, (MacMillan, London, 1963).

    Google Scholar 

  19. L. B. Loeb, Kinetic Theory of Gases, (Dover Publications, New York, 1961).

    Google Scholar 

  20. C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A. D. Pelton and S. Petersen, FactSage thermochemical software and databases. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry26, (2), 2002 (189–228).

    Article  CAS  Google Scholar 

  21. C. Chatillon and I. Nuta, Mass Spectrometric Studies of Non-Equilibrium Vaporizations in Knudsen Cells: A Way to the Determination of the Nature of Kinetic Processes. ECS Transactions46, (1), 2013 (1–22).

    Article  Google Scholar 

  22. N. Jacobson, N. Ingersoll and D. Myers, Vaporization coefficients of SiO2 and MgO. Journal of the European Ceramic Society37, (5), 2017 (2245–2252).

    Article  CAS  Google Scholar 

  23. S. I. Nagai, K. Niwa, M. Shinmei and T. Yokokawa, Knudsen effusion study of silica. Journal of the Chemical Society-Faraday Transactions I: Physical Chemistry in Condensed Phases69, (9), 1973 (1628–1634).

    Article  CAS  Google Scholar 

  24. S. I. Shornikov, I. Y. Archakov and M. M. Shults, Mass-spectrometric study of evaporation and thermodynamic properties of silicon dioxide–II. Determination of partial coefficients of silicon dioxide evaporation. Zhurnal Obshchei Khimii69, (2), 1999 (197–206).

    Google Scholar 

  25. R. P. Burns, Systematics of the evaporation coefficient Al2O3, Ga2O3, In2O3. The Journal of Chemical Physics44, (9), 1966 (3307–3319).

    Article  CAS  Google Scholar 

  26. A. H. Persad and C. A. Ward, Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation. Chemical Reviews116, (14), 2016 (7727–7767).

    Article  CAS  Google Scholar 

  27. T. M. Besmann, SOLGASMIX-PV, a computer program to calculate equilibrium relationships in complex chemical systems. ORNL/TM-5775, (Oak Ridge National Lab., TN, USA, 1977).

  28. J. O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, THERMO-CALC & DICTRA, computational tools for materials science. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry: 26(2), 2002 (273-312).

  29. G. Langstroth, C. Diehl and E. Winhold, The evaporation of droplets in still air. Canadian Journal of Research28, (6), 1950 (580–595).

    Article  Google Scholar 

  30. P. C. S. Wu, T. J. O’Keefe and F. Kisslinger, Inert-Gas Effect on the Rate of Evaporation of Zinc and Cadmium. Metallurgical Transactions A-Physical Metallurgy and Materials Science11, (1), 1980 (123–126).

    Article  Google Scholar 

  31. N. Pieterse and W. W. Focke, Diffusion-controlled evaporation through a stagnant gas: Estimating low vapour pressures from thermogravimetric data. Thermochimica Acta406, (1-2), 2003 (191–198).

    Article  CAS  Google Scholar 

  32. G. H. Geiger and D. R. Poirier, Transport Phenomena in Metallurgy, (Addison-Wesley Publishing Company, Massachusetts, 1973).

    Google Scholar 

  33. D. R. Gaskell, An Introduction to Transport Phenomena in Materials Engineering, (Macmillan Publishing Company, New York, 1992).

    Google Scholar 

  34. J. R. Welty, C. E. Wicks, G. Rorrer and R. E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, (Wiley, London, 2009).

    Google Scholar 

  35. R. A. Svehla, Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures, 1962, NASA-TR-R-132.

  36. R. W. Bartlett, Platinum Oxidation Kinetics with Convective Diffusion and Surface Reaction. Journal of the Electrochemical Society114, (6), 1967 (547–550).

    CAS  Google Scholar 

  37. H. C. Graham and H. Davis, Oxidation/vaporization kinetics of Cr2O3. Journal of the American Ceramic Society54, (2), 1971 (89–93).

    Article  CAS  Google Scholar 

  38. L. S. Caretto, A. D. Gosman, S. V. Patankar, and D. B. Spalding, Two calculation procedures for steady, three-dimensional flows with recirculation. in Proceedings of the third international conference on numerical methods in fluid mechanics, (Springer, Berlin, 1973), pp. 60–68.

  39. W. D. Kingery, Property Measurements at High Temperatures, (Wiley, New York, 1959).

    Google Scholar 

  40. E. A. Gulbransen and K. F. Andrew, The Kinetics of Oxidation of High Purity Nickel. Journal of the Electrochemical Society101, (3), 1954 (128–140).

    Article  CAS  Google Scholar 

  41. F. R. Menter, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal32, (8), 1994 (1598–1605).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for NASA support from the Transformative Aeronautics Concepts Program as a part of the Transformative Tools and Technologies Project. Helpful discussions with Dr. S. Gokoglu (NASA GRC) and Prof. E. Opila (Univ of VA) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan S. Jacobson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobson, N.S., Kuczmarski, M.A. & Kowalski, B.A. Vaporization of Protective Oxide Films into Different Gas Atmospheres. Oxid Met 93, 247–282 (2020). https://doi.org/10.1007/s11085-019-09921-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09921-1

Keywords

Navigation