Recycling Molybdenum Oxides from Waste Molybdenum Disilicides: Oxidation Experimental Study and Photocatalytic Properties

  • Ge Kong
  • Xiaoni Du
  • Xiaoping Cai
  • Peizhong FengEmail author
  • Xiaohong Wang
  • Farid Akhtar
Original paper


To recycle elemental molybdenum from waste molybdenum disilicide (MoSi2) heating elements, the MoSi2 was first disintegrated to MoO3 and SiO2 powders in air at a pest oxidation temperature of 500 °C. X-ray diffraction (XRD) patterns confirmed the completion of the pest oxidation reaction. The mixture of MoO3 and SiO2 powders were heated to 950 °C in a tube furnace to evaporate MoO3, and the XRD patterns of the residue showed that only SiO2 was left in the crucible, confirming that the MoO3 was removed through thermal evaporation. The collected MoO3 crystals had a striped morphology. Photocatalytic performance of MoO3 showed superior activity in comparison with commercial MoO3 and P25 for the degradation of methylene blue under visible light irradiation. The photocatalytic degradation activity of MoO3 synthesized by thermal evaporation at 950 °C was 99.25% in 60 min.


Oxidation Waste MoSi2 Recycling MoO3 Thermal evaporation Photocatalytic properties 



This work was supported by the National Natural Science Foundation of China (51574241 and 51874305), the Swedish Foundation for Strategic Research (SSF) for Infrastructure Fellowship (RIF14-0083).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    P. Feng, X. Qu, A. Farid, et al., Rare Metals 25, 225 (2006).CrossRefGoogle Scholar
  2. 2.
    Y. Jiang, D. Feng, H. Ru, et al., Surface and Coatings Technology 339, 91 (2018).CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, Y. Li, C. Bai, et al., Ceramics International 43, 6250 (2017).CrossRefGoogle Scholar
  4. 4.
    A. Makris, Industrial Heating 61, 46 (1994).Google Scholar
  5. 5.
    V. Bizzarri, B. Linder and N. Lindskog, American Ceramic Society Bulletin 68, 1834 (1989).Google Scholar
  6. 6.
    M. Samadzadeh, C. Oprea, H. Sharif, et al., International Journal of Refractory Metals and Hard Materials 66, 11 (2017).CrossRefGoogle Scholar
  7. 7.
    D. Berztiss, R. Cerchiara and E. Gulbransen, Materials Science and Engineering: A 155, 165 (1992).CrossRefGoogle Scholar
  8. 8.
    T. Chou and T. Nieh, Scripta Metallurgica et Materialia 26, 1637 (1992).CrossRefGoogle Scholar
  9. 9.
    Z. Zaki, N. Mostafa and Y. Ahmed, International Journal of Refractory Metals and Hard Materials 45, 23 (2014).CrossRefGoogle Scholar
  10. 10.
    Y. Liu, G. Shao and P. Tsakiropoulos, Intermetallics 9, 125 (2001).CrossRefGoogle Scholar
  11. 11.
    P. Feng, X. Wang, Y. He, et al., Journal of Alloys and Compounds 473, 185 (2009).CrossRefGoogle Scholar
  12. 12.
    F. Zhang, L. Zhang, A. Shan, et al., Intermetallics 14, 406 (2006).CrossRefGoogle Scholar
  13. 13.
    J. Chen, C. Li, Z. Fu, et al., Materials Science and Engineering: A 261, 239 (1999).CrossRefGoogle Scholar
  14. 14.
    S. Chevalier, F. Bernard, E. Gaffet, et al., Materials Science Forum 461–464, 439 (2004).CrossRefGoogle Scholar
  15. 15.
    S. Knittel, S. Mathieu and M. Vilasi, Intermetallics 18, 2267 (2010).CrossRefGoogle Scholar
  16. 16.
    K. Kurokawa, H. Houzumi, I. Saeki, et al., Materials Science and Engineering: A 261, 292 (1999).CrossRefGoogle Scholar
  17. 17.
    C. McKamey, P. Tortorelli, J. DeVan, et al., Journal of Materials Research 7, 2747 (1992).CrossRefGoogle Scholar
  18. 18.
    K. Yanagihara, K. Przybylski and T. Maruyama, Oxidation of Metals 47, 2 (1997).CrossRefGoogle Scholar
  19. 19.
    T. Chou and T. Nieh, Journal of Materials Science 29, 2963 (1994).CrossRefGoogle Scholar
  20. 20.
    D. Pope and R. Darolia, Materials Research Society Bulletin 21, 30 (1996).CrossRefGoogle Scholar
  21. 21.
    A. Bouzidi, N. Benramdane, H. Tabet-Derraz, et al., Materials Science and Engineering: B 97, 5 (2003).CrossRefGoogle Scholar
  22. 22.
    M. Rahmania, S. Keshmiri, J. Yu, et al., Sensor and Actuators B 145, 13 (2010).CrossRefGoogle Scholar
  23. 23.
    I. Navas, R. Vinodkumar, K. Lethy, et al., Journal of Physics D: Applied Physics 42, 175305 (2009).CrossRefGoogle Scholar
  24. 24.
    A. Chithambararaj, N. Sanjini, A. Chandra Bose, et al., Catalysis Science & Technology 3, 1405 (2013).CrossRefGoogle Scholar
  25. 25.
    V. Kumar, K. Gayathri and S. Anthony, Materials Research Bulletin 76, 147 (2016).CrossRefGoogle Scholar
  26. 26.
    S. Sunu, E. Prabhu, V. Jayaraman, et al., Sensor and Actuators B 94, 189 (2003).CrossRefGoogle Scholar
  27. 27.
    J. Zhou, S. Deng, N. Xu, et al., Applied Physics Letters 83, 2653 (2003).CrossRefGoogle Scholar
  28. 28.
    A. Prasad, P. Gouma, D. Kubinski, et al., Thin Solid Films 436, 46 (2003).CrossRefGoogle Scholar
  29. 29.
    A. Prasad, D. Kubinski and P. Gouma, Sensors and Actuators B: Chemical 93, 25 (2003).CrossRefGoogle Scholar
  30. 30.
    K. Gesheva and T. Ivanova, Chemical Vapor Deposition 12, 231 (2006).CrossRefGoogle Scholar
  31. 31.
    S. Ashraf, C. Blackman, G. Hyett, et al., Journal of Materials Chemistry 16, 3575 (2006).CrossRefGoogle Scholar
  32. 32.
    R. Patil, M. Uplane and P. Patil, Applied Surface Science 252, 8050 (2006).CrossRefGoogle Scholar
  33. 33.
    K. Hellström, P. Persson and E. Ström, Journal of the European Ceramic Society 35, 513 (2015).CrossRefGoogle Scholar
  34. 34.
    X. Liu, S. Wang, Q. Zhang, et al., Chinese Journal of Materials Research 24, 17 (2010).Google Scholar
  35. 35.
    S. L. Prabavathi, P. S. Kumar, K. Saravanakumar, et al., Journal of Photochemistry and Photobiology A 356, 642 (2018).CrossRefGoogle Scholar
  36. 36.
    D. Zhou, Z. Chen, Q. Yang, et al., Solar Energy Materials and Solar Cells 157, 399 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.Division of Materials ScienceLuleå University of TechnologyLuleåSweden

Personalised recommendations