Skip to main content
Log in

Effect of Nanostructured Surface on the Corrosion Behavior of RAFM Steels

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This study investigated the effect of a preformed nanostructured surface on the corrosion behavior of 9Cr2WVTa reduced activation ferritic/martensitic (RAFM) steel and 9Cr+AlSi steel (9Cr2WVTa with the 0.12 wt.% Al and 0.68 wt.% Si addition) at 700 °C in air and at 550 °C in liquid lead–bismuth eutectic (LBE) alloys. The nanostructured surface layer was fabricated by surface mechanical rolling treatment (SMRT). The results showed that the SMRT 9Cr+AlSi sample has a lower oxidation rate than the SMRT 9Cr2WVTa steel at 700 °C in air, due to the faster diffusion rates of Al, Cr and Si in the nanostructure and a higher diffusion driving force increased by Cr. The SMRT 9Cr+AlSi sample at 550 °C in oxygen-saturated LBE alloy also had a higher oxidation rate, due to the formation of Al and Si oxides in the internal oxide layer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Klueh and A. Nelson, Journal of Nuclear Materials 371, (1), 2007 (37–52).

    Article  Google Scholar 

  2. H. Tanigawa, K. Shiba, H. Sakasegawa, T. Hirose and S. Jitsukawa, Fusion Engineering and Design 86, (9), 2011 (2549–2552).

    Article  Google Scholar 

  3. A. Kohyama, Y. Kohno, K. Asakura and H. Kayano, Journal of Nuclear Materials 212, 1994 (684–689).

    Article  Google Scholar 

  4. N. Baluc, R. Schäublin, P. Spätig and M. Victoria, Nuclear Fusion 44, (1), 2004 (56).

    Article  Google Scholar 

  5. G. Butterworth, Journal of Nuclear Materials 179, 1991 (135–142).

    Article  Google Scholar 

  6. R. Klueh and E. Bloom, Nuclear Engineering and Design. Fusion 2, (3), 1985 (383–389).

    Article  Google Scholar 

  7. D. Dulieu, K. Tupholme and G. Butterworth, Journal of Nuclear Materials 141, 1986 (1097–1101).

    Article  Google Scholar 

  8. M. Tamura, H. Hayakawa, M. Tanimura, A. Hishinuma and T. Kondo, Journal of Nuclear Materials 141, 1986 (1067–1073).

    Article  Google Scholar 

  9. T. Noda, F. Abe, H. Araki and M. Okada, Journal of Nuclear Materials 141, 1986 (1102–1106).

    Article  Google Scholar 

  10. Z. Lu, R. Faulkner, N. Riddle, F. Martino and K. Yang, Journal of Nuclear Materials 386, 2009 (445–448).

    Article  Google Scholar 

  11. H. Qun-ying, L. Chun-jing, L. Yan-fen, L. Shao-jun, W. Yi-can, L. Jian-gang, W. Fa-rong, J. Xin, S. Yi-yin and Y. Jin-nan, Chinese Journal of Nuclear Science and Engineering 1, 2007 (008).

    Google Scholar 

  12. J. S. Dunning, D. E. Alman and J. C. Rawers, Oxidation of Metals 57, (5), 2002 (409–425).

    Article  Google Scholar 

  13. T. Ishitsuka, Y. Inoue and H. Ogawa, Oxidation of Metals 61, (1), 2004 (125–142).

    Article  Google Scholar 

  14. S. G. Wang, M. Sun, H. B. Han, K. Long and Z. D. Zhang, Corrosion Science 72, 2013 (64–72).

    Article  Google Scholar 

  15. R. L. Klueh and D. R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, (ASTM, West Conshohocken, 2001).

    Book  Google Scholar 

  16. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (Cambridge University Press, New York, 2006), p. 131.

    Book  Google Scholar 

  17. S. Sadique, A. Mollah, M. Islam, M. Ali, M. Megat and S. Basri, Oxidation of Metals 54, (5–6), 2000 (385–400).

    Article  Google Scholar 

  18. F. H. Stott, in Materials Science Forum, Vol. 251 (Trans Tech Publications, 1997), pp. 19–32.

  19. F. H. Stott and G. C. Wood, Oxidation of Metals 44, 1995 (113–145).

    Article  Google Scholar 

  20. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, (11), 1971 (1782–1790).

    Article  Google Scholar 

  21. G. N. Irving, J. Stringer and D. P. Whittle, Corrosion 33, 1977 (56–60).

    Article  Google Scholar 

  22. S. W. Guan and W. W. Smeltzer, Oxidation of Metals 42, 1994 (375).

    Google Scholar 

  23. J. F. Radavich, Corrosion 15, 1959 (613–617).

    Article  Google Scholar 

  24. D. E. Jones and J. Stringer, Oxidation of Metals 9, 1975 (409).

    Article  Google Scholar 

  25. F. H. Stott, G. J. Gabriel, F. I. Wei and G. C. Wood, Materials and Corrosion 38, (9), 1987 (521–531).

    Article  Google Scholar 

  26. B. Gleeson and M. A. Harper, Oxidation of Metals 49, (3–4), 1998 (373–399).

    Article  Google Scholar 

  27. G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellán, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, (5–6), 2010 (319–340).

    Article  Google Scholar 

  28. L. Mikkelsen, S. Linderoth, J. Bilde-Sørensen, in Materials Science Forum, (Trans Tech Publ, 2004), p. 117.

  29. DE Jones and J. Stringer, Oxidation of Metals 9, (5), 1975 (409–413).

    Article  Google Scholar 

  30. E. A. Gulbransen and K. F. Andrew, Journal of the Electrochemical Society 106, (11), 1959 (941–948).

    Article  Google Scholar 

  31. G. R. Holcomb and D. E. Alman, Scripta Materialia 54, (10), 2006 (1821–1825).

    Article  Google Scholar 

  32. Y. H. Lu, Z. B. Wang, Y. Y. Song and L. J. Rong, Corrosion Science 102, 2016 (301–309).

    Article  Google Scholar 

  33. X. Peng, Nanoscale 2, 2010 (262–268).

    Article  Google Scholar 

  34. F. H. Wang, Oxidation of Metals 48, 1997 (215–224).

    Article  Google Scholar 

  35. F. Stott, G. Gabriel, F. Wei and G. Wood, Materials and Corrosion 38, (9), 1987 (521–531).

    Article  Google Scholar 

  36. B. Gleeson and M. Harper, Lifetime Modelling of High Temperature Corrosion Processes:(EFC 34), (Maney Publishing, London, 2001), p. 167.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Major Research Plan of the National Natural Science Foundation of China (No. 91226204) and the Strategic Priority Research Program of the Chinese Academy of Science (No. XDA03010304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijian Rong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhang, M., Tang, W. et al. Effect of Nanostructured Surface on the Corrosion Behavior of RAFM Steels. Oxid Met 91, 495–510 (2019). https://doi.org/10.1007/s11085-019-09895-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09895-0

Keywords

Navigation