Oxidation of Metals

, Volume 91, Issue 3–4, pp 483–494 | Cite as

Effects of ECAP on the Formation and Tribological Properties of Thermal Oxidation Layers on a Pure Titanium Surface

  • Baosen ZhangEmail author
  • Jiying Wang
  • Shuaishuai ZhuEmail author
  • Naishu Zhu
  • Jingjing Zhang
  • Zhangzhong Wang
Original Paper


In this paper, thermal oxidation was used to prepare an oxide layer on a pure titanium surface using the equal-channel angular pressing (ECAP) treatment. Transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction and Raman spectrometry were used for morphology and structure characterization and investigation of the oxidation kinetics during the oxidation process. The results showed that the major phase of the oxide layer was rutile-type TiO2. The presence of voids in the oxide layer decreased with increasing temperature. The grain size of the TiO2 obtained on the ECAP-treated Ti surface was smaller than that on the as-received titanium. The ECAP treatment promoted the formation of the oxide layer; the activation energy (Q) for the oxidation reaction with ECAP treatment was 81.03 kJ mol−1 in the range of 650 °C to 850 °C, which was 26.3% lower than that of the as-received titanium. The hardness values of the oxide layers on the as-received titanium and ECAP-treated Ti were 705.8 HV and 805.1 HV, respectively. The friction coefficient of the oxide layer on the ECAP-treated Ti was lower than that on the as-received titanium. The wear rates of the oxide layers on the ECAP-treated Ti and as-received titanium were 4.66 × 10−8 mm3 N−1 m−1 and 6.28 × 10−8 mm3 N−1 m−1, respectively.


Titanium ECAP Thermal oxidation Oxidation kinetics Tribological properties 



We are grateful for the financial support by the National Nature Science Foundation of China (51505497), the Natural Science Foundation of Jiangsu Province (BK20161482, BE2017094), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (16KJA430002, 15KJA430004), the Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province, the Qing Lan Project and 333 Project of Jiangsu Province.


  1. 1.
    M. L. Wasz, F. R. Brotzen, R. B. Mclellan, et al., International Materials Reviews 41, 1 (2014).CrossRefGoogle Scholar
  2. 2.
    Z. B. Wang, H. X. Hu, Y. G. Zheng, et al., Corrosion Science 103, 50 (2016).CrossRefGoogle Scholar
  3. 3.
    S. Mei, H. Wang, W. Wang, et al., Biomaterials 35, 4255 (2014).CrossRefGoogle Scholar
  4. 4.
    S. M. M. Ramos, B. Canut, L. Gea, et al., Journal of Materials Research 7, 178 (2016).CrossRefGoogle Scholar
  5. 5.
    N. K. Kuromoto, R. A. Simão and G. A. Soares, Materials Characterization 58, 114 (2007).CrossRefGoogle Scholar
  6. 6.
    A. Kanjer, V. Optasanu, L. Lavisse, et al., Oxidation of Metals 88, 1 (2017).CrossRefGoogle Scholar
  7. 7.
    X. Zhao, W. Fu, X. Yang, et al., Scripta Materialia 59, 542 (2008).CrossRefGoogle Scholar
  8. 8.
    J. L. Mo and M. H. Zhu, Wear 267, 874 (2009).CrossRefGoogle Scholar
  9. 9.
    H. K. Kim, H. G. Kim, B. S. Lee, et al., Materials Transactions 58, 592 (2017).CrossRefGoogle Scholar
  10. 10.
    Y. Fu and A. W. Batchelor, Wear 214, 83 (1998).CrossRefGoogle Scholar
  11. 11.
    B. Guo, J. Zhou, S. Zhang, et al., Surface and Coatings Technology 202, 4121 (2008).CrossRefGoogle Scholar
  12. 12.
    K. Aniołek, M. Kupka, A. Barylski, et al., Applied Surface Science 357, 1419 (2015).CrossRefGoogle Scholar
  13. 13.
    W. Yan and X. X. Wang, Journal of Materials Science 39, 5583 (2004).CrossRefGoogle Scholar
  14. 14.
    K. Aniołek, M. Kupka and A. Barylski, Wear 356–357, 23 (2016).CrossRefGoogle Scholar
  15. 15.
    H. Dong and T. Bell, Wear 238, 131 (2000).CrossRefGoogle Scholar
  16. 16.
    T. Schmitz, C. Hertl, E. Werner, et al., Surface and Coatings Technology 216, 46 (2013).CrossRefGoogle Scholar
  17. 17.
    M. H. Song, S. M. Han, D. J. Min, et al., Scripta Materialia 59, 623 (2008).CrossRefGoogle Scholar
  18. 18.
    G. Purcek, O. Saray, O. Kul, et al., Materials Science and Engineering A 517, 97 (2009).CrossRefGoogle Scholar
  19. 19.
    D. S. Kang, K. J. Lee, E. P. Kwon, et al., Materials Science and Engineering A 632, 120 (2015).CrossRefGoogle Scholar
  20. 20.
    T. Schmitz, C. Hertl, E. Werner, et al., Surface and Coatings Technology 216, 46 (2013).CrossRefGoogle Scholar
  21. 21.
    D. V. Gunderov, A. V. Polyakov, V. D. Sitdikov, et al., Physics of Metals and Metallography 114, 1078 (2013).CrossRefGoogle Scholar
  22. 22.
    H. C. Guleryuz, Journal of Alloys and Compounds 472, 241 (2009).CrossRefGoogle Scholar
  23. 23.
    H. S. Lee, J. H. Yoon, Y. M. Yi, E. Gemelli and N. H. A. Camargo, Matéria 12, 525 (2007).Google Scholar
  24. 24.
    L. Yang, C. Z. Wang, S. W. Lin, et al., Acta Physica Sinica 66, 01 (2017).Google Scholar
  25. 25.
    P. G. Oberson, Z. W. Wyatt and S. Ankem, Scripta Materialia 65, 638 (2011).CrossRefGoogle Scholar
  26. 26.
    E. Yamaka and K. Narita, Physics Letters 23, 645 (1966).CrossRefGoogle Scholar
  27. 27.
    G. H. Lee, Materials Transactions 9295, 92950Q-92950Q-5 (2015).Google Scholar
  28. 28.
    Y. Li, H. P. Ng, H. D. Jung, et al., Materials Letters 114, 144 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanjing Institute of TechnologyNanjingChina
  2. 2.Jiangsu Key Laboratory of Advanced Structural Materials and Application TechnologyNanjingChina
  3. 3.National Key Laboratory for Disaster Prevention and Mitigation of Explosion and ImpactArmy Engineering UniversityNanjingChina

Personalised recommendations