Abstract
Gas turbine hot-section parts can be very expensive components with a finite lifetime. Their durability is strongly dependent on the operating service conditions which control the maintenance intervals and associated expenses. Blade damage is the most frequent reason for failures in gas turbine engines and also oxidation is one of the most critical degradation mechanisms when the power system operates in partially loading condition. This paper describes the methodology of oxidation life assessment for uncoated and coated blades with various metallic coatings in the first stage of a typical gas turbine engine. The resultant weight-change curves were validated by comparing them with the experimental and numerical data from the various references. Also a computer code was developed for real-time monitoring of remaining oxidation life and damage on the maximum blade temperature where the maximum damage accumulation occurs. Results indicated that the oxidation life consumption increases if the duration of cycle decreases or the temperature of the metal is increased during real-time operational condition. Also, considering a duplex metallic coating on the first-stage blade, the rate of oxidation damage reduces about 10 times compared to an uncoated blade.
This is a preview of subscription content, access via your institution.










Abbreviations
- \(t\) :
-
Time (h)
- \(\tau\) :
-
Cycle time (h)
- \(T\) :
-
Temperature (°C)
- \(Z\) :
-
The ratio of the molecular weight of the oxide to the atomic weight of oxygen in the oxide
- \(k_{p}\) :
-
Oxidation kinetic constant \(\left( {\frac{{{\text{mg}}^{2} }}{{{\text{cm}}^{4} \,{\text{h}}}}} \right)\)
- \(W_{\text{ox}}\) :
-
Weight of oxide formed during a thermal cycle \(\left( {\frac{\text{mg}}{{{\text{cm}}^{2} }}} \right)\)
- \(W_{\text{s}}\) :
-
Weight of oxide spalled during thermal cycle \(\left( {\frac{\text{mg}}{{{\text{cm}}^{2} }}} \right)\)
- \(W_{\text{r}}\) :
-
Weight of oxide remained on the coating surface after a thermal cycle \(\left( {\frac{\text{mg}}{{{\text{cm}}^{2} }}} \right)\)
- \({\text{RL}}\) :
-
Remaining life
- \(\rho\) :
-
Density \(\left( {\frac{\text{kg}}{{{\text{m}}^{3} }}} \right)\)
- \(X_{\text{Al}}\) :
-
Aluminum content (at.%)
References
K. S. Chan, N. S. Cheruvu and G. R. Leverant, Transactions of the ASME 121, 484 (1999).
N. S. Cheruvu, K. S. Chan and G. R. Leverant, JSME International Journal 46, 635 (2003).
R. Viswanathan and A. C. Dolbec, Life Assessment Technology for Combustion Turbine Blades, in Presented at the International Gas Turbine Conference and Exhibit ASME (Dusseldorf, West Germany, June 8–12, 1986), (86-GT-257).
N. S. Cheruvu, K. S. Chan and G. R. Leverant, Transactions of the ASME 122, 50 (2000).
R. Viswanathan, N. S. Cheruvu, and K. S. Chan, Coating for Advanced Large Frame Combustion Turbines for Power Generation, in Proceedings of ASME Turbo Expo (Atlanta, GA, June 16–19, 2003), (GT 2003-38105).
K. S. Chan, N. S. Cheruvu and G. R. Leverant, Journal of Engineering for Gas Turbines and Power 120, 609 (1998).
J. A. Nesbitt and R. W. Heckel, Thin Solid Films 119, 281 (1984).
E. Y. Lee, et al., Surface and Coatings Technology 32, 19 (1987).
J. A. Nesbitt, Diffusional Aspects of the High-Temperature Oxidation of Protective Coatings, in Minerals, Metals, and Materials Society. Diffusion Analysis and Applications (Warrendale, PA, 1989), pp. 307–324.
J. A. Nesbitt, Journal of Electrochemical Society 136, 1518 (1989).
J. A. Nesbitt, Journal of Electrochemical Society 136, 1511 (1989).
J. A. Nesbitt, COSIM-A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated with Oxidation and Interdiffusion of Overlay-Coated Substrates (Glenn Research Center, Cleveland, OH, 2000), (NASA/TM-2000-209271), pp. 1–48.
H. B. Probst and C. E. Lowell, Journal of Metals 40, 18 (1988).
C. E. Lowell, et al., Oxidation of Metals 36, 81 (1991).
J. L. Smialek, Metallurgical Transanctions A 9A, 309 (1978).
J. L. Smialek, et al., Cyclic Oxidation Testing and Modelling: A NASA Lewis Perspective (Glenn Research Center, Cleveland, OH, 2000), (NASA. NASA/TM-2000-209769), pp. 1–48.
J. L. Smialek and J. V. Auping, Oxidation of Metals 57, 559 (2002).
J. L. Smialek, Acta Materialia 51, 469 (2003).
J. L. Smialek, Materials Science Forum, Switzerland: Trans Tech Publications 461–464, 663 (2004).
P. Krukovskya, et al., Materials Research 7, 43 (2004).
K. Yuan, et al., Surface and Coatings Technology 232, 204 (2013).
B. Gleeson and B. Li, Materials Science Forum 461–464, 427 (2004).
K. S. Chan, Metallurgical and Material Transanctions A 28A, 411 (1997).
X. J. Peng, et al., Journal of Materials Engineering and Performance 23, 4366 (2014).
S. Agema, et al., Blade Life Management System for GE Frame 6B Gas Turbines (EPRI, Palo Alto, CA, 1998), (TR-109196-V1).
S. Cheruvu and K. Krzywosz, Combustion Turbine (CT) Hot Section Coating Life Management (EPRI, Charlotte, March 31, 2006), (DE-FC26-01NT41231).
K. S. Chan, Predicting Coating Degradation under Variable Peak Temperatures, in International Gas Turbine & Aeroengine Congress & Exhibition, Indianapolis (ASME, Indiana, June 7–10, 1999), (99-GT-381).
K. S. Chan and N. S. Cheruvu, Degradation Mechanism Characterization and Reamaining Life Prediction for NiCoCrAlY Coatings, in Proceedings of ASME Turbo Expo Power for Land, Sea, and Air (Vienna, June 14–17, 2004), (GT2004-53383), pp. 1–8.
R. Viswanathan, et al., Combustion Turbine (CT) Hot Section Coating Life Management (EPRI, Palo Alto, CA, April 1, 2002–September 30, 2002) (Semi Annual Report, DE-FC26-01NT41231).
N. S. Cheruvu and K. T. Chiang, Isothermal and Cyclic Oxidation Behaviour of Turbine Blade Alloys, in Proceedings of ASME Turbo Expo Power for Land, Sea and Air (Barcelona, May 8–11, 2006) (GT2006-90756), pp. 1–8.
R. Viswanathan, et al., Combustion Turbine (CT) Hot Section Coating Life Management (EPRI, Palo Alto, CA, October 1, 2002–March 31, 2003), (Semi-Annual Technical Progress Report. DE-FC26-01NT41231), pp. 1–57.
N. S. Cheruvu, et al., Blade Life Management System for GE Frame 7FA/9FA Turbine (EPRI, Palo Alto, CA, 1998) (Interim Report. TR-111548).
N. S. Cheruvu, K. S. Chan, and G. R. Leverant, Combustion Turbine Hot Section Life Management: High Temperature Coating Systems (EPRI, Palo Alto, CA, 2000) (1000432).
M. I. Wood, OMMI 3, 1 (2004).
M. I. Wood, Part A, Proceedings of the Institution of Mechanical Engineers, IMechE 214, 193 (2000).
P. Lowden, et al., The Role of Metallurgical Analysis in Gas Turbine Maintenance, in 18th Symposium of the Industrial Application of Gas Turbines Committee (Banff, AB: October 19–21, 2009) (2009-IAGT-303), pp. 1–15.
R. Viswarathan and A. C. Dolbec, Life Assessment Technology for Combustion Turbine Blades, in ASME International Gas Turbine Conference and Exhibit, Dusseldorf, West Germany (June 8–12, 1986) (86-GT-257).
M. I. Wood, Internal Damage Accumulation and Imminent Failure of an Industrial Gas Turbine Blade Interpretaion and Implications, in International Gas Turbine and Aeroengine Congress & Exhibition, Birmingham, UK, (June 10–13, 1996) (96-GT-5113).
J. K. Hepworth, et al., Life Assessment of Gas Turbine Blades and Vanes, in ASME International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, Florida (June 2–June 5, 1997), (97-G1-446).
J. A. Nesbitt and R. W. Heckel, Metallurgical Transanction A 18, 2087 (1987).
H. E. Evans, Materials at High Temperatures 12, 219 (1994).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mazaheri, F., Alizadeh, M., Akheratdoost, H. et al. Gas Turbine Oxidation Life Assessment and Monitoring. Oxid Met 90, 691–711 (2018). https://doi.org/10.1007/s11085-018-9863-4
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11085-018-9863-4