Skip to main content

Impact of Deposits and Their Morphology on the Active Corrosion of Iron in Chlorine- and Sulfur-Containing Atmospheres in the Temperature Range of 350–500 °C

Abstract

Iron-based alloys have shown high corrosion rates under ash deposits typical for waste-to-energy plants. The ashes on superheater tubes in waste incineration are multicomponent systems including alkali and alkali–earth chlorides and sulfates. Under and within such salts, the corrosive effect on the alloy is induced by a complicated interplay of such ash products. On the one hand, in chlorine-containing atmospheres iron-based alloys are believed to be attacked by the so-called active corrosion, including the formation of volatile corrosion products and their transformation into stable iron oxides. At the same time, they form complex scales, involving among other compounds iron sulfides, chlorides, and oxides. Thus, in order to directly investigate the influence of a deposit on the corrosion in waste-to-energy plants and to reproduce the scales observed on field tested superheaters, this work compares the scale formation and metal wastage under different chemically inert alumina deposits with different grain sizes to a synthetic salt as well as to an actual deposit taken from a superheater tube in a plant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Eurostat, Environmental statistics and accounts in Europe, http://ec.europa.eu/eurostat/de/web/products-statistical-books/-/KS-32-10-283 (2010).

  2. S. Pollmann, Chemie Ingenieur Technik 39 (1967).

  3. P. L. Daniel, L. D. Paul and J. Barna, Materials Performance 27, 1988 (22).

    Google Scholar 

  4. Y. Kawahara, Corrosion Science 44, 2002 (223).

    Article  Google Scholar 

  5. P. Viklund, A. Hjörnhede, P. Henderson, A. Stálenheim and R. Pettersson, Fuel Processing Technology 105, 2013 (106).

    Article  Google Scholar 

  6. P. Mayer and A. V. Manolescu, Corrosion 36, 1980 (369).

    Article  Google Scholar 

  7. P. D. Miller, H. H. Krause, D. A. Vaughan and W. K. Boyd, Corrosion 28, 1972 (274).

    Article  Google Scholar 

  8. H.-H. Reichel, Materials and Corrosion 39, 1988 (54).

    Article  Google Scholar 

  9. K. Kautz and J. Tichatschke, VGB Kraftwerkstechnik 52, 1972 (249).

    Google Scholar 

  10. D. Kopeliovich, Fluxes for melting aluminum, www.substech.com/dokuwiki/doku.php?id=fluxes_for_melting_aluminum (2012).

  11. E. Reese and H. J. Grabke, Materials and Corrosion 43, 1992 (547).

    Article  Google Scholar 

  12. E. Reese and H. J. Grabke, Materials and Corrosion 44, 1993 (41).

    Article  Google Scholar 

  13. M.J. McNallan, W.W. Liang, S.H. Kim, and C.T. Kang, in Proceedings of High Temperature Corrosion, San Diego California, 2–6 March 1981, ed. by R.A. Rapp, NACE, 1983), p. 316.

  14. O. Kubaschewski and I. Barin, Pure and Applied Chemistry 38, 1974 (469).

    Article  Google Scholar 

  15. P. D. Miller, H. H. Krause, J. Zupan and W. K. Boyd, Corrosion 28, 1972 (222).

    Article  Google Scholar 

  16. Y. Kawahara, Materials at High Temperatures 14, 1997 (261).

    Article  Google Scholar 

  17. T. Ishitsuka and K. Nose, Corrosion Science 44, 2002 (247).

    Article  Google Scholar 

  18. J. M. Brossard, I. Diop, X. Chaucherie, F. Nicol, C. Rapin and M. Vilasi, Materials and Corrosion 62, 2011 (543).

    Article  Google Scholar 

  19. M. C. Galetz, J. T. Bauer, M. Schütze, M. Noguchi, C. Takatoh and H. Cho, Materials and Corrosion 65, 2014 (778).

    Article  Google Scholar 

  20. E. Schaal, N. David, P. J. Panteix, C. Rapin, J. M. Brossard and F. Maad, Oxidation of Metals 84, 2015 (307).

    Article  Google Scholar 

  21. K. Rahts, M. Schorr, C. Schwalm and M. Schütze, Praktische Metallographie 36, 1999 (86).

    Google Scholar 

  22. NACE International, Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations (2005).

  23. R. Bender and M. Schütze, Materials and Corrosion 54, 2003 (567).

    Article  Google Scholar 

  24. B. Waldmann, Dr. rer. nat. Thesis, Universität Augsburg, 2007.

  25. Z. Grzesik and S. Mrowec, High Temperature Materials and Processes 31, 2012 (539).

    Google Scholar 

  26. H. Schäfer, Zeitschrift für Anorganische und Allgemeine Chemie 261, 1950 (142).

    Article  Google Scholar 

  27. A. W. Henderson, T. T. Campbell and F. E. Block, Metallurgical Transactions 3, 1972 (2579).

    Article  Google Scholar 

  28. H. J. Grabke, E. Reese and M. Spiegel, Corrosion Science 37, 1995 (1023).

    Article  Google Scholar 

  29. G. Sorell, Materials at High Temperatures 14, 1997 (137).

    Article  Google Scholar 

  30. M. Spiegel, Materials and Corrosion 50, 1999 (373).

    Article  Google Scholar 

  31. J. Pettersson, N. Folkeson, L.-G. Johansson and J.-E. Svensson, Oxidation of Metals 76, 2011 (93).

    Article  Google Scholar 

  32. R. J. Fruehan, Metallurgical Transactions 3, 1972 (2585).

    Article  Google Scholar 

  33. U. Hohmann, in Rauchgasseitige Dampferzeugerkorrosion: Erfahrungen bei der Schadensminderung, ed. by M. Born, Saxonia, (Freiberg, 2003), p. 79.

  34. N. Bertrand, C. Desgranges, D. Poquillon, M. C. Lafont and D. Monceau, Oxidation of Metals 73, 2010 (139).

    Article  Google Scholar 

  35. L. Krumm and M. C. Galetz, Oxidation of Metals 87, 2017 (757).

    Article  Google Scholar 

  36. N. S. Jacobson, Oxidation of Metals 26, 1986 (157).

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are expressed to the Federal Ministry of Education and Research Germany (BMBF) for financing this work and to Ragnar Warnecke from GKS Schweinfurt for providing the plant ash.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Krumm.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krumm, L., Galetz, M.C. Impact of Deposits and Their Morphology on the Active Corrosion of Iron in Chlorine- and Sulfur-Containing Atmospheres in the Temperature Range of 350–500 °C. Oxid Met 90, 365–381 (2018). https://doi.org/10.1007/s11085-018-9845-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-018-9845-6

Keywords

  • Chlorine corrosion
  • Carbon steel
  • Waste incineration
  • High temperature
  • Deposits