Oxidation of Metals

, Volume 90, Issue 3–4, pp 365–381 | Cite as

Impact of Deposits and Their Morphology on the Active Corrosion of Iron in Chlorine- and Sulfur-Containing Atmospheres in the Temperature Range of 350–500 °C

  • Ludmila Krumm
  • Mathias C. Galetz
Original Paper


Iron-based alloys have shown high corrosion rates under ash deposits typical for waste-to-energy plants. The ashes on superheater tubes in waste incineration are multicomponent systems including alkali and alkali–earth chlorides and sulfates. Under and within such salts, the corrosive effect on the alloy is induced by a complicated interplay of such ash products. On the one hand, in chlorine-containing atmospheres iron-based alloys are believed to be attacked by the so-called active corrosion, including the formation of volatile corrosion products and their transformation into stable iron oxides. At the same time, they form complex scales, involving among other compounds iron sulfides, chlorides, and oxides. Thus, in order to directly investigate the influence of a deposit on the corrosion in waste-to-energy plants and to reproduce the scales observed on field tested superheaters, this work compares the scale formation and metal wastage under different chemically inert alumina deposits with different grain sizes to a synthetic salt as well as to an actual deposit taken from a superheater tube in a plant.


Chlorine corrosion Carbon steel Waste incineration High temperature Deposits 



Thanks are expressed to the Federal Ministry of Education and Research Germany (BMBF) for financing this work and to Ragnar Warnecke from GKS Schweinfurt for providing the plant ash.


  1. 1.
    Eurostat, Environmental statistics and accounts in Europe, (2010).
  2. 2.
    S. Pollmann, Chemie Ingenieur Technik 39 (1967).Google Scholar
  3. 3.
    P. L. Daniel, L. D. Paul and J. Barna, Materials Performance 27, 1988 (22).Google Scholar
  4. 4.
    Y. Kawahara, Corrosion Science 44, 2002 (223).CrossRefGoogle Scholar
  5. 5.
    P. Viklund, A. Hjörnhede, P. Henderson, A. Stálenheim and R. Pettersson, Fuel Processing Technology 105, 2013 (106).CrossRefGoogle Scholar
  6. 6.
    P. Mayer and A. V. Manolescu, Corrosion 36, 1980 (369).CrossRefGoogle Scholar
  7. 7.
    P. D. Miller, H. H. Krause, D. A. Vaughan and W. K. Boyd, Corrosion 28, 1972 (274).CrossRefGoogle Scholar
  8. 8.
    H.-H. Reichel, Materials and Corrosion 39, 1988 (54).CrossRefGoogle Scholar
  9. 9.
    K. Kautz and J. Tichatschke, VGB Kraftwerkstechnik 52, 1972 (249).Google Scholar
  10. 10.
    D. Kopeliovich, Fluxes for melting aluminum, (2012).
  11. 11.
    E. Reese and H. J. Grabke, Materials and Corrosion 43, 1992 (547).CrossRefGoogle Scholar
  12. 12.
    E. Reese and H. J. Grabke, Materials and Corrosion 44, 1993 (41).CrossRefGoogle Scholar
  13. 13.
    M.J. McNallan, W.W. Liang, S.H. Kim, and C.T. Kang, in Proceedings of High Temperature Corrosion, San Diego California, 2–6 March 1981, ed. by R.A. Rapp, NACE, 1983), p. 316.Google Scholar
  14. 14.
    O. Kubaschewski and I. Barin, Pure and Applied Chemistry 38, 1974 (469).CrossRefGoogle Scholar
  15. 15.
    P. D. Miller, H. H. Krause, J. Zupan and W. K. Boyd, Corrosion 28, 1972 (222).CrossRefGoogle Scholar
  16. 16.
    Y. Kawahara, Materials at High Temperatures 14, 1997 (261).CrossRefGoogle Scholar
  17. 17.
    T. Ishitsuka and K. Nose, Corrosion Science 44, 2002 (247).CrossRefGoogle Scholar
  18. 18.
    J. M. Brossard, I. Diop, X. Chaucherie, F. Nicol, C. Rapin and M. Vilasi, Materials and Corrosion 62, 2011 (543).CrossRefGoogle Scholar
  19. 19.
    M. C. Galetz, J. T. Bauer, M. Schütze, M. Noguchi, C. Takatoh and H. Cho, Materials and Corrosion 65, 2014 (778).CrossRefGoogle Scholar
  20. 20.
    E. Schaal, N. David, P. J. Panteix, C. Rapin, J. M. Brossard and F. Maad, Oxidation of Metals 84, 2015 (307).CrossRefGoogle Scholar
  21. 21.
    K. Rahts, M. Schorr, C. Schwalm and M. Schütze, Praktische Metallographie 36, 1999 (86).Google Scholar
  22. 22.
    NACE International, Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations (2005).Google Scholar
  23. 23.
    R. Bender and M. Schütze, Materials and Corrosion 54, 2003 (567).CrossRefGoogle Scholar
  24. 24.
    B. Waldmann, Dr. rer. nat. Thesis, Universität Augsburg, 2007.Google Scholar
  25. 25.
    Z. Grzesik and S. Mrowec, High Temperature Materials and Processes 31, 2012 (539).Google Scholar
  26. 26.
    H. Schäfer, Zeitschrift für Anorganische und Allgemeine Chemie 261, 1950 (142).CrossRefGoogle Scholar
  27. 27.
    A. W. Henderson, T. T. Campbell and F. E. Block, Metallurgical Transactions 3, 1972 (2579).CrossRefGoogle Scholar
  28. 28.
    H. J. Grabke, E. Reese and M. Spiegel, Corrosion Science 37, 1995 (1023).CrossRefGoogle Scholar
  29. 29.
    G. Sorell, Materials at High Temperatures 14, 1997 (137).CrossRefGoogle Scholar
  30. 30.
    M. Spiegel, Materials and Corrosion 50, 1999 (373).CrossRefGoogle Scholar
  31. 31.
    J. Pettersson, N. Folkeson, L.-G. Johansson and J.-E. Svensson, Oxidation of Metals 76, 2011 (93).CrossRefGoogle Scholar
  32. 32.
    R. J. Fruehan, Metallurgical Transactions 3, 1972 (2585).CrossRefGoogle Scholar
  33. 33.
    U. Hohmann, in Rauchgasseitige Dampferzeugerkorrosion: Erfahrungen bei der Schadensminderung, ed. by M. Born, Saxonia, (Freiberg, 2003), p. 79.Google Scholar
  34. 34.
    N. Bertrand, C. Desgranges, D. Poquillon, M. C. Lafont and D. Monceau, Oxidation of Metals 73, 2010 (139).CrossRefGoogle Scholar
  35. 35.
    L. Krumm and M. C. Galetz, Oxidation of Metals 87, 2017 (757).CrossRefGoogle Scholar
  36. 36.
    N. S. Jacobson, Oxidation of Metals 26, 1986 (157).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dechema-Forschungsinstitut (DFI)Frankfurt am MainGermany

Personalised recommendations